Skip to main content

Advertisement

Log in

Characterization of phenolic compounds using UPLC–HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study was aimed to investigate the phenolic profile of methanolic extract of Trifolium repens L. leaves using LC–HRMS and LC–DAD and its anti--cholinesterase and anti-oxidant activities. The n-Hexane (Tr.Hex), chloroform (Tr.Chf), ethanol (Tr.Et), methanol (Tr.Cme), and aqueous (Tr.Aq) extracts were tested for anti-cholinesterases and anti-oxidant potentials. Twenty-nine phenolic compounds were quantified and identified. The highest amount present were of tyrosol (11.1 mg/g), quercetin-3-glucuronide (5.36 mg/g), formononetin-7-glucoside (5.03 mg/g), quercetin-3-O-glucoside (4.71 mg/g), 3,4-di-O-caffeoylquinic acid (4.69 mg/g), formononetin-7-glucoside-acetate (4.29 mg/g), quercetin-3-O-glucoside (4.26 mg/g), and formononetin (3.64 mg/g). Tr.Chf and Tr.Et were most active against AChE, BChE, and free radicals. Tr.Chf exhibited IC50 of 15 and 21 µg/mL against AChE and BChE, respectively. In the anti-oxidant study, Tr.Chf showed IC50 of 42 and 25 µg/mL against ABTS and DPPH radicals, respectively. The current results of anti-cholinesterase and anti-radical studies on T. repens further signify its potential application in neurodegenerative disorders.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498

    CAS  PubMed  Google Scholar 

  3. Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10(9):819–828

    PubMed  PubMed Central  Google Scholar 

  4. Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M (2019) Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 11:155. https://doi.org/10.3389/fnagi.2019.00155

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK (2018) Phyto-therapeutic and nanomedicinal approach to cure Alzheimer disease: present status and future opportunities. Front Aging Neurosci 10:284

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ayaz M, Junaid M, Ullah F, Sadiq A, Khan MA, Ahmad W, Shah MR, Imran M, Ahmad S (2015) Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: a preliminary anti-Alzheimer’s study. Lipids Health Dis 14(1):141

    PubMed  PubMed Central  Google Scholar 

  7. Mimica N, Presečki P (2009) Side effects of approved antidementives. Psychiatria Danubina 21(1):108–113

    PubMed  Google Scholar 

  8. Arias E, Gallego-Sandín S, Villarroya M, García AG, López MG (2005) Unequal neuroprotection afforded by the acetylcholinesterase inhibitors Galantamine, Donepezil, and Rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors. J Pharmacol Exp Ther 315(3):1346–1353. https://doi.org/10.1124/jpet.105.090365

    Article  CAS  PubMed  Google Scholar 

  9. Oh M, Houghton P, Whang W, Cho J (2004) Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 11(6):544–548

    CAS  PubMed  Google Scholar 

  10. Schulz V (2003) Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 10:74–79

    CAS  PubMed  Google Scholar 

  11. Ayaz M, Junaid M, Ullah F, Subhan F, Sadiq A, Ali G, Ovais M, Shahid M, Ahmad A, Wadood A (2017) Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front Pharmacol 8:697

    PubMed  PubMed Central  Google Scholar 

  12. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB (2017) Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 174(11):1325–1348

    CAS  PubMed  Google Scholar 

  14. Zoric L, Merkulov L, Lukovic J, Boza P (2012) Comparative analysis of qualitative anatomical characters of Trifolium L. (Fabaceae) and their taxonomic implications: preliminary results. Plant Syst Evol 298(1):205–219

    Google Scholar 

  15. Sakeran MI, Zidan N, Rehman H, Aziz AT, Saggu S (2014) Abrogation by Trifolium alexandrinum root extract on hepatotoxicity induced by acetaminophen in rats. Redox Rep 19(1):26–33

    PubMed  Google Scholar 

  16. Kolodziejczyk-Czepas J (2016) Trifolium species - the latest findings on chemical profile, ethnomedicinal use and pharmacological properties. J Pharm Pharmacol 68(7):845–861. https://doi.org/10.1111/jphp.12568

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad S, Zeb A (2019) Effects of phenolic compounds from aqueous extract of Trifolium repens against acetaminophen‐induced hepatotoxicity in mice. J Food Biochem 43(9):e12963. https://doi.org/10.1111/jfbc.12963

    Article  CAS  PubMed  Google Scholar 

  18. Chen YH, Chen P, Wang Y, Yang CH, Wu X, Wu CJ, Luo L, Wang Q, Niu C, Yao JY (2019) Structural characterization and anti‐inflammatory activity evaluation of chemical constituents in the extract of Trifolium repens L. J Food Biochem 43(9):e12981. https://doi.org/10.1111/jfbc.12981

    Article  CAS  PubMed  Google Scholar 

  19. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K (2009) Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy-drug Targ 8(3):229–235

    CAS  Google Scholar 

  20. Zeb A (2015) A reversed phase HPLC-DAD method for the determination of phenolic compounds in plant leaves. Anal Methods 7(18):7753–7757. https://doi.org/10.1039/C5AY01402F

    Article  CAS  Google Scholar 

  21. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    CAS  PubMed  Google Scholar 

  22. Ayaz M, Junaid M, Ahmed J, Ullah F, Sadiq A, Ahmad S, Imran M (2014) Phenolic contents, antioxidant and anticholinesterase potentials of crude extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement Altern Med 14(1):145

    PubMed  PubMed Central  Google Scholar 

  23. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14(4):289–300

    CAS  PubMed  Google Scholar 

  24. Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13(3–4):161–171

    CAS  PubMed  Google Scholar 

  25. Williams P, Sorribas A, Howes M-JR (2011) Natural products as a source of Alzheimer’s drug leads. Nat Product Rep 28(1):48–77

    CAS  Google Scholar 

  26. Saunders D, Poppleton D, Struchkov A, Ireland R (2014) Analysis of five bioactive compounds from naturally occurring Rhodiola rosea in eastern Canada. Can J Plant Sci 94(4):741–748

    CAS  Google Scholar 

  27. Giovannini L, Migliori M, Filippi C, Origlia N, Panichi V, Falchi M, Bertelli A, Bertelli A (2002) Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells. Int J Tissue React 24(2):53–56

    CAS  PubMed  Google Scholar 

  28. Bu Y, Rho S, Kim J, Kim MY, Lee DH, Kim SY, Choi H, Kim H (2007) Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci Lett 414(3):218–221

    CAS  PubMed  Google Scholar 

  29. An L, Guan S, Shi G, Bao Y, Duan Y, Jiang B (2006) Protocatechuic acid from Alpinia oxyphylla against MPP+ -induced neurotoxicity in PC12 cells. Food Chem Toxicol 44(3):436–443

    CAS  PubMed  Google Scholar 

  30. Zhang Z, Li G, Szeto SS, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y (2015) Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biol Med 84:331–343

    CAS  Google Scholar 

  31. Ojha S, Javed H, Azimullah S, Khair SBA, Haque ME (2015) Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Dev Ther 9:5499

    CAS  Google Scholar 

  32. Cheng C-Y, Su S-Y, Tang N-Y, Ho T-Y, Chiang S-Y, Hsieh C-L (2008) Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res 1209:136–150

    CAS  PubMed  Google Scholar 

  33. Booth NL, Overk CR, Yao P, Burdette JE, Nikolic D, Chen S-N, Bolton JL, Breemen RB, Pauli GF, Farnsworth NR (2006) The chemical and biologic profile of a red clover (Trifolium pratense L.) phase II clinical extract. J Altern Complement Med 12(2):133–139

    PubMed  Google Scholar 

  34. Aras AB, Guven M, Akman T, Ozkan A, Sen HM, Duz U, Kalkan Y, Silan C, Cosar M (2015) Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats. Neural Regen Res 10(1):146

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hurtado O, Ballesteros I, Cuartero M, Moraga A, Pradillo J, Ramírez-Franco J, Bartolomé-Martín D, Pascual D, Torres M, Sánchez-Prieto J (2012) Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation. Neurochem Int 61(1):119–127

    CAS  PubMed  Google Scholar 

  36. Subedi L, Ji E, Shin D, Jin J, Yeo J, Kim S (2017) Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients 9(3):207

    PubMed Central  Google Scholar 

  37. Liang K, Ye Y, Wang Y, Zhang J, Li C (2014) Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci 344(1–2):100–104

    CAS  PubMed  Google Scholar 

  38. Fei H-X, Zhang Y-B, Liu T, Zhang X-J, Wu S-L (2018) Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer’s disease. Biosci Biotechnol Biochem 82(1):57–64

    CAS  PubMed  Google Scholar 

  39. Shahwar D, Rehman SU, Raza MA (2010) Acetyl cholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from Impatiens bicolor Linn. J Med Plants Res 4(3):260–266

    CAS  Google Scholar 

  40. Szwajgier D (2013) Anticholinesterase activity of phenolic acids and their derivatives. Zeitschrift für Naturforschung C 68(3–4):125–132

    CAS  Google Scholar 

  41. Szwajgier D, Borowiec K (2012) Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J Inst Brew 118(1):40–48

    CAS  Google Scholar 

  42. Gülçin İ, Scozzafava A, Supuran CT, Koksal Z, Turkan F, Çetinkaya S, Bingöl Z, Huyut Z, Alwasel SH (2016) Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 31(6):1698–1702

    PubMed  Google Scholar 

  43. Kwon S-H, Lee H-K, Kim J-A, Hong S-I, Kim H-C, Jo T-H, Park Y-I, Lee C-K, Kim Y-B, Lee S-Y (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649(1–3):210–217

    CAS  PubMed  Google Scholar 

  44. Senorans F, Ibanez E, Cavero S, Tabera J, Reglero G (2000) Liquid chromatographic–mass spectrometric analysis of supercritical-fluid extracts of rosemary plants. J Chromatogr A 870(1–2):491–499

    CAS  PubMed  Google Scholar 

  45. Santos J, Oliveira M, Ibáñez E, Herrero M (2014) Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J Chromatogr A 1327:118–131

    CAS  PubMed  Google Scholar 

  46. He X-g, Lin L-z, Lian L-z (1996) Analysis of flavonoids from red clover by liquid chromatography—electrospray mass spectrometry. J Chromatogr A 755(1):127–132

    CAS  Google Scholar 

  47. Tsao R, Papadopoulos Y, Yang R, Young JC, McRae K (2006) Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J Agric Food Chem 54(16):5797–5805

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alam Zeb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Zeb, A., Ayaz, M. et al. Characterization of phenolic compounds using UPLC–HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves. Eur Food Res Technol 246, 485–496 (2020). https://doi.org/10.1007/s00217-019-03416-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03416-8

Keywords

Navigation