Skip to main content
Log in

Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus × clementina Hort. juice

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Citrus × clementina juice obtained from fruits collected in three different areas (flood plain, hill and coastal plain) was investigated for the chemical composition, radical scavenging properties (DPPH and ABTS tests), and α-amylase and α-glucosidase inhibitory activity. Neohesperidin (72.96–116.50 mg/100 mL), hesperidin (55.24–69.52 mg/100 mL) and narirutin (7.21–12.13 mg/100 mL) are the main flavonoids identified by HPLC analyses. In carbohydrate hydrolysing enzymes inhibitory activity tests, samples showed higher potency against α-glucosidase. Juice from hill was the most active with an IC50 value of 77.79 μg/mL. Data on the radical scavenging activity revealed the following trend of potency flood plain > coastal plain > hill. These results could help farmers to select fruits for different industrial purpose such as functional food and matrix to extract nutraceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

ADA:

American Diabetes Association

DPPH:

2,2-diphenyl-1-picrylhydrazyl

JNK:

C-Jun NH2-terminal kinase

PCA:

Principal component analysis

ROS:

Reactive oxygen species

T1DM:

Type 1 diabetes

T2DM:

Type 2 diabetes

TNF-α:

Tumour-necrosis factor-α

References

  1. Berner L, O’Donnell J (1998) Functional foods and health claims legislation: applications to dairy foods. Int Dairy J 8:355–362

    Google Scholar 

  2. Milind L (2008) Nutritive and medicinal value of Citrus fruit. In: Ladaniya M (ed) Citrus fruit: biology, technology and evaluation. Academic Press, Salt Lake City, pp 501–515 (2038 S 1500E Salt Lake City UT 84105 USA El ). ISBN 8601407120555

    Google Scholar 

  3. Patil BS, Jayaprakasha GK, Murthy KNC, Vikram A (2009) Bioactive compounds: historical perspectives, opportunities, and challenges. J Agric Food Chem 57:8142–8160

    CAS  PubMed  Google Scholar 

  4. Cutuli G, Di Martino E, Lo Giudice V, Pennisi L, Raciti G, Russo F, Scuderi A, Spina P (1985) Trattato di agrumicoltura. Edagricole, Bologna

    Google Scholar 

  5. Alfadda AA, Sallam RM (2012) Reactive Oxygen Species in Health and Disease. J Biomed Biotechnol Article ID 936486

  6. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    CAS  PubMed  Google Scholar 

  7. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiwari AK, Rao JM (2002) Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 83:30–38

    CAS  Google Scholar 

  9. Tundis R, Loizzo MR, Menichini F (2010) Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10:315–331

    CAS  PubMed  Google Scholar 

  10. Official methods of analysis, AOAC, Association of Official Analytical Chemists. Edition 18: AOAC (2005)

  11. IFU (3-17-58) International Federation of Fruit Juice Producers. Methods of analysis and microbiological methods. http://www.ifu-fruitjuice.com/ifu-methods

  12. Loizzo MR, Bonesi M, Pugliese A, Menichini F, Tundis R (2014) Chemical composition and bioactivity of dried fruits and honey of Ficus carica cultivars Dottato, San Francesco and Citrullara. J Sci Food Agric 94:2179–2186

    CAS  PubMed  Google Scholar 

  13. Rahal A, Kumar A, Singh A (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int 761264:1–19

    Google Scholar 

  14. Loizzo MR, Bonesi M, Menichini F, Tenuta MC, Leporini M, Tundis R (2016) Antioxidant and carbohydrate-hydrolysing enzymes potential of Sechium edule (Jacq.) Swartz (Cucurbitaceae) peel, leaves and pulp fresh and processed. Plant Foods Hum Nutr 71:381–387

    CAS  PubMed  Google Scholar 

  15. Sun T, Tanumihardjo SA (2007) An integrated approach to evaluate food antioxidant capacity. J Food Sci 72:159–165

    Google Scholar 

  16. MIRAAF (1994) Metodi Ufficiali di analisi chimica del suolo. Roma, Italy

    Google Scholar 

  17. SISS (1985) Metodi normalizzati analisi del suolo. Edagricole, Bologna

    Google Scholar 

  18. Embleton TM, Jones WW, Labanauskas CH, Reuther W (1973) Leaf analyses as a diagnostic tool and guide to fertilization. In: Reuther W (ed) The Citrus industry. University of California, Berkeley, pp 183–210

    Google Scholar 

  19. White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crops Res 60:11–26

    Google Scholar 

  20. Bermejo A, Pardo J, Morales J, Cano A (2016) Comparative study of bioactive components and quality from juices of different mandarins: discriminant multivariate analysis of their primary and secondary metabolites. Agricu Sci 7:341–351

    CAS  Google Scholar 

  21. Al-Mouei R, Choumane W (2014) Physiochemical juice characteristics of various Citrus species in Syria. Int J Plant Soil Sci 3:1083–1095

    Google Scholar 

  22. Boudries H, Madani K, Touati N, Souagui S, Medouni S, Chibane M (2012) Pulp antioxidant activities, mineral contents and juice nutritional properties of Algerian Clementine Cultivars and Mandarin. Afr J Biotechnol 11:4258–4267

    CAS  Google Scholar 

  23. Sdiri S, Bermejo A, Aleza P, Navarro P, Salvador A (2012) Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Res Int 49:462–468

    CAS  Google Scholar 

  24. Xu G, Liu D, Chen J, Ye X, Ma Y, Shi J (2008) Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem 106:545–551

    CAS  Google Scholar 

  25. Milella L, Caruso M, Galgano F, Favati F, Padula MC, Martelli G (2011) Role of the cultivar in choosing Clementine fruits with a high level of health-promoting compounds. J Agric Food Chem 59:5293–5298

    CAS  PubMed  Google Scholar 

  26. Dhuique-Mayer C, Caris-Veyrat C, Ollitrault P, Curk F, Amiot MJ (2005) Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area. J Agric Food Chem 53:2140–2145

    CAS  PubMed  Google Scholar 

  27. Rapisarda P, Bellomo SE, Fabroni S, Russo G (2008) Juice quality of two new mandarin-like hybrids (Citrus clementina Hort. Ex tan × Citrus sinensis L. Osbeck) containing anthocyanins. J Agric Food Chem 56:2074–2078

    CAS  PubMed  Google Scholar 

  28. Rapisarda P, Pannuzzo P, Romano G, Russo G (2003) Juice components of a new pigmented citrus hybrid Citrus sinensis (L.) Osbeck × Citrus clementina Hort. ex Tan. J Agric Food Chem 51:1611–1616

    CAS  PubMed  Google Scholar 

  29. Atmani D, Chaher N, Atmani D, Berboucha M, Debbache N, Boudaoud H (2009) Flavonoids in human health: from structure to biological activity. Curr Nutr Food Sci 5:225–237

    CAS  Google Scholar 

  30. Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C (2007) Flavonoid composition of Citrus juices. Molecules 12:1641–1673

    CAS  PubMed  Google Scholar 

  31. Kanaze FI, Gabrielli C, Kokkalou E, Georgarakis M, Niopas I (2003) Simultaneous reversed-phase high-performance liquid chromatographic method for the determination of diosmin, naringin and hesperidin in different Citrus fruit juices and pharmaceutical formulation. J Pharm Biomed Anal 33:243–249

    CAS  PubMed  Google Scholar 

  32. Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H (2006) Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem 70:178–192

    CAS  PubMed  Google Scholar 

  33. Aruoma OI, Landes B, Ramful-Baboolall D, Bourdon E, Neergheen-Bhujun V, Wagner KH, Bahorun T (2012) Functional benefits of citrus fruits in the management of diabetes. Prev Med 54:S12–S16

    PubMed  Google Scholar 

  34. Abirami A, Nagarani G, Siddhuraju P (2014) In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci Hum Well 3:16–25

    Google Scholar 

  35. Owira PM, Ojewole JA (2009) Grapefruit juice improves glycaemic control but exacerbates metformin-induced lactic acidosis in non-diabetic rats. Methods Find Exp Clin Pharmacol 31:563–570

    CAS  PubMed  Google Scholar 

  36. Mollace V, Sacco I, Janda E, Malara C, Ventrice D, Colica C, Visalli V, Muscoli S, Ragusa S, Muscoli C, Rotiroti D, Romeo F (2011) Hypolipemic and hypoglycaemic activity of bergamot polyphenols: from animal models to human studies. Fitoterapia 82:309–316

    CAS  PubMed  Google Scholar 

  37. Tadera K, Minami Y, Takamatsu K, Matsuoka T (2010) Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol 52:149–153

    Google Scholar 

  38. Tundis R, Bonesi M, Sicari V, Pellicanò TM, Tenuta MC, Leporini M, Menichini F, Loizzo MR (2016) Poncirus trifoliata (L.) Raf.: chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J Funct Foods 25:477–485

    CAS  Google Scholar 

  39. Kim Y, Keogh JB, Clifton PM (2016) Polyphenols and glycemic control. Nutrients 8:17. doi:10.3390/nu8010017

    CAS  PubMed Central  Google Scholar 

  40. Shen W, Xu Y, Lu YH (2012) Inhibitory effects of citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. J Agric Food Chem 60:9609–9619

    CAS  PubMed  Google Scholar 

  41. Jia S, Hu Y, Zhang W, Zhao X, Chen Y, Sun C, Li X, Chen K (2015) Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KKA(y) mice. Food Funct 6:878–886

    CAS  PubMed  Google Scholar 

  42. Seshagirirao P, Giri KV (1942) The mechanism of β-amylase inhibition by vitamin C. Proc Ind Acad Sci Sec B 16:190–204

    Google Scholar 

  43. Ullah A, Khan A, Khan I (2016) Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J 24:547–553

    Google Scholar 

  44. Russo D, Bonomo MG, Salzano G, Martelli GBG, Milella L (2012) Nutraceutical properties of Citrus clementina juices. Pharmacologyonline 1:84–93

    CAS  Google Scholar 

  45. Codoñer-Franch P, López-Jaén AB, Muñiz P, Sentandreu E, Bellés VV (2008) Mandarin juice improves the antioxidant status of hypercholesterolemic children. J Pediatr Gastroenterol Nutr 47:349–355

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Falco farms for supplying the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica R. Loizzo.

Ethics declarations

Funding

The study was not specifically funded.

Conflict of interest

The authors declare that there are no conflicts of interest.

Compliance with ethics requirements

Research does not involve any human participants and/or animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loizzo, M.R., Leporini, M., Sicari, V. et al. Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus × clementina Hort. juice. Eur Food Res Technol 244, 523–534 (2018). https://doi.org/10.1007/s00217-017-2978-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2978-z

Keywords

Navigation