Skip to main content
Log in

Hypolipidemic mechanism of gypenosides via inhibition of pancreatic lipase and reduction in cholesterol micellar solubility

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Effect of gypenosides on porcine pancreatic lipase (PL) activity was determined in vitro. Gypenosides inhibited the PL activity in a dose-dependent manner at the concentrations of 0–1.0 mg/ml. The Lineweaver–Burk plots for gypenosides indicated that the inhibition on PL by gypenosides was noncompetitive. The conformation of PL was investigated by means of circular dichroism and fluorescence. The result revealed the decrease in α-helix contents, increase in β-sheet and the decrease in fluorescence intensity after gypenosides treatment. The incorporation of cholesterol into micelles was inhibited by gypenosides. A complex was observed by transmission electron microscopy, indicating interaction between cholesterol and gypenosides which led to the decrease in cholesterol micelle solubility. The result revealed the fact that gypenosides played a role in inhibiting PL activity and reducing intestinal cholesterol absorption via inhibition of micelle formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jacobson TA, Miller M, Schaefer EJ (2007) Hypertriglyceridemia and cardiovascular risk reduction. Clin Ther 29:763–777

    Article  CAS  Google Scholar 

  2. Estadella D, Oyama LM, Dâmaso AR, Ribeiro EB, Do Nascimento CMO (2004) Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 20:218–224

    Article  CAS  Google Scholar 

  3. Mukherjee M (2003) Human digestive and metabolic lipases—a brief review. J Mol Catal B Enzym 22:369–376

    Article  CAS  Google Scholar 

  4. Drent ML, Van der Veen EA (1993) Lipase inhibition: a novel concept in the treatment of obesity. Int J Obes 17:241–244

    CAS  Google Scholar 

  5. Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obes 24:758–764

    Article  CAS  Google Scholar 

  6. Kawaguchi K (1997) Hesperidin as an inhibitor of lipases from porcine pancreas and pseudomonas. Biosci Biotechnol Biochem 61:102–104

    Article  CAS  Google Scholar 

  7. Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H et al (2005) Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 53:4593–4598

    Article  CAS  Google Scholar 

  8. Han LK (2001) Anti-obesity effects in rodents of dietary tea saponin, a lipase inhibitor. Int J Obes Relat Metab Disord 25:1459–1464

    Article  CAS  Google Scholar 

  9. Liu R (2010) Anti-obesity effects of protopanaxdiol types of ginsenosides isolated from the leaves of American ginseng (Panax quinquefolius L.) in mice fed with a high-fat diet. Fitoterapia 81:1079–1087

    Article  CAS  Google Scholar 

  10. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M et al (2008) Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytomedicine 15:1140–1145

    Article  CAS  Google Scholar 

  11. Han LK (2002) Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice. J Nutr 132:2241–2245

    CAS  Google Scholar 

  12. Bai MS, Gao JM, Fan C, Yang SX, Zhang G, Zheng CD (2010) Bioactive dammarane-type triterpenoids derived from the acid hydrolysate of Gynostemma pentaphyllum saponins. Food Chem 119:306–310

    Article  CAS  Google Scholar 

  13. Megalli S (2006) Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the Zucker fatty rat. J Pharm Pharm Sci 9:281–291

    Google Scholar 

  14. Wang S, Dong S, Zhang R, Shao H, Liu Y (2014) Effects of proanthocyanidins on porcine pancreatic lipase: conformation, activity, kinetics and thermodynamics. Process Biochem 49:237–243

    Article  CAS  Google Scholar 

  15. Wang S, Sun Z, Dong S, Liu Y, Liu Y (2014) Molecular interactions between (–)-epigallocatechin gallate analogs and pancreatic lipase. Plos One 9:1–10

    Google Scholar 

  16. Malinow MR, Mclaughlin P, Stafford C, Livingston AL, Kohler GO, Pr C (1979) Comparative effects of alfalfa saponins and alfalfa fiber on cholesterol absorption in rats. Am J Clin Nutr 32:1810–1812

    CAS  Google Scholar 

  17. Malinow MR, Mclaughlin P, Papworth L, Stafford C, Kohler GO, Livingston AL et al (1978) Effect of alfalfa saponins on intestinal cholesterol absorption in rats. Am J Clin Nutr 30:2061–2067

    Google Scholar 

  18. Woollett L, Wang Y, Buckley D, Yao L, Chin S, Granholm N et al (2006) Micellar solubilisation of cholesterol is essential for absorption in humans. Gut 55:197–204

    Article  CAS  Google Scholar 

  19. Mel’Nikov SM, Seijen JW, Ap E (2004) Effect of phytosterols and phytostanols on the solubilization of cholesterol by dietary mixed micelles: an in vitro study. Chem Phys Lipids 127:121–141

    Article  CAS  Google Scholar 

  20. Ikeda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T et al (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1127:141–146

    Article  CAS  Google Scholar 

  21. Vermeer MA, Mulder TPJ, Molhuizen HOF (2008) Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. J Agric Food Chem 56:12031–12036

    Article  CAS  Google Scholar 

  22. Yang TT (1999) Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci 66:411–423

    Article  Google Scholar 

  23. Yang YH, Yang J, Jiang QH (2013) Hypolipidemic effect of gypenosides in experimentally induced hypercholesterolemic rats. Lipids Health Dis 12:109–116

    Article  CAS  Google Scholar 

  24. Chávez-Santoscoy RA, Gutiérrez-Uribe JA, So SS (2013) Effect of flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors. Plant Foods Hum Nutr 68:416–423

    Article  CAS  Google Scholar 

  25. Liu Y, Chen D, Xu L, Yan Y (2012) Evaluation of structure and hydrolysis activity of candida rugosa Lip7 in presence of sub-/super-critical CO2. Enzyme Microb Technol 51:354–358

    Article  CAS  Google Scholar 

  26. Zhang J, Zhang W, Mamadouba B, Xia W (2012) A comparative study on hypolipidemic activities of high and low molecular weight chitosan in rats. Int J Biol Macromol 51:504–508

    Article  CAS  Google Scholar 

  27. Yoshizumi K, Hirano K, Ando H, Hirai Y, Ida Y, Tsuji T et al (2005) Lupane-type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J Agric Food Chem 54:335–341

    Article  CAS  Google Scholar 

  28. Vol N (1999) Applications of circular dichroism in protein and peptide analysis. TrAC Trends Anal Chem 18:236–244

    Article  Google Scholar 

  29. Winkler F, d’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774

    Article  CAS  Google Scholar 

  30. Jd S, Yg L, Wu S, Cygler M (1991) Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351:761–764

    Article  Google Scholar 

  31. Goncalves R, Mateus N, de Freitas V (2010) Study of the interaction of pancreatic lipase with procyanidins by optical and enzymatic methods. J Agric Food Chem 58:11901–11906

    Article  CAS  Google Scholar 

  32. Yi J, Jiang B, Zhang Z, Liao X, Zhang Y, Hu X (2011) Effect of ultrahigh hydrostatic pressure on the activity and structure of mushroom (Agaricus bisporus) polyphenoloxidase. J Agric Food Chem 60:593–599

    Article  CAS  Google Scholar 

  33. Ikeda I, Yamahira T, Kato M, Ishikawa A (2010) Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J Agric Food Chem 58:8591–8595

    Article  CAS  Google Scholar 

  34. Adisakwattana S, Moonrat J, Srichairat S, Chanasit C, Tirapongporn H, Chanathong B et al (2010) Lipid-lowering mechanisms of grape seed extract (Vitis vinifera L) and its antihyperlidemic activity. J Med Plants Res 4:2113–2120

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 125 Project (2012BAD33B05), and Anhui Tongling Ruipu Peony Industry Development Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxin Wang.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Wang, H., Ma, C. et al. Hypolipidemic mechanism of gypenosides via inhibition of pancreatic lipase and reduction in cholesterol micellar solubility. Eur Food Res Technol 242, 305–312 (2016). https://doi.org/10.1007/s00217-015-2540-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2540-9

Keywords

Navigation