Skip to main content

Advertisement

Log in

Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work reports the safety assessment, genetic relatedness and extracellular antimicrobial (bacteriocin) activity of 75 potential probiotic Lactococcus lactis strains isolated from aquacultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment, and the biochemical and genetic characterization of the bacteriocin most active against the rainbow trout pathogen Lactococcus garvieae. Seventeen (22 %) strains produced, at least, one biogenic amine, but none of them amplified the corresponding genes. Thirty (40 %) strains showed antibiotic resistance to, at least, one antibiotic, and the only antibiotic resistance genes found were tet(K), tet(L), tet(O) and tet(T). None of the strains produced hemolysin or gelatinase, degraded gastric mucin or deconjugated bile salts. ERIC-PCR fingerprinting allowed clustering the lactococci in three well-defined and highly divergent groups (31.0 % similarity). Nine (12 %) L. lactis strains were identified as bacteriocin producers. The bacteriocin produced by L. lactis subsp. cremoris WA2-67 was purified, and mass spectrometry and DNA sequencing revealed its identity to nisin Z (NisZ). Altogether, the results allowed the identification of 34 (45.3 %) putatively safe lactococci, including three bacteriocinogenic strains. This is the first description of tet(K), tet(O) and tet(T) in L. lactis. Moreover, ERIC-PCR fingerprinting has been shown for the first time as a valuable tool for genetic profiling of L. lactis strains from aquatic origin. A NisZ-producing L. lactis strain has been isolated for the first time from an aquatic environment, and this strain may be considered as a potential probiotic for rainbow trout farming for improving the quality and safety of fish and fish products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Toranzo AE, Romalde JL, Magariños B, Barja JL, Basurco B, Rogers C (2009) Present and future of aquaculture vaccines against fish bacterial diseases. In: The use of veterinary drugs and vaccines in Mediterranean aquaculture, vol 86. Options Méditerranéennes: Série A. Séminaires Méditerranéens. CIHEAM, Zaragoza, pp 155–176

  2. Vendrell D, Balcázar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL (2006) Lactococcus garvieae in fish: a review. Comp Immunol Microbiol 29(4):177–198

    Article  Google Scholar 

  3. Chan J, Woo P, Teng J, Lau S, Leung S, Tam F, Yuen K (2011) Primary infective spondylodiscitis caused by Lactococcus garvieae and a review of human L. garvieae infections. Infection 39(3):259–264

    Article  CAS  Google Scholar 

  4. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    Article  CAS  Google Scholar 

  5. EFSA (2008) Scientific opinion of the Panel on Animal Health and Animal Welfare on a request from the European Commission on the animal welfare aspects of husbandry systems for farmed trout. EFSA J 796:1–97

    Google Scholar 

  6. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    Article  CAS  Google Scholar 

  7. Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14(3):251–258

    Article  Google Scholar 

  8. EFSA (2011) Maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA J 9:1–82

    Google Scholar 

  9. Liu C, Zhang Z-Y, Dong K, Yuan J-P, Guo X-K (2009) Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. Biomed Environ Sci 22(5):401–412

    Article  CAS  Google Scholar 

  10. EFSA (2007) Opinion of the Scientific Committee on a request from EFSA on the introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J 587:1–16

    Google Scholar 

  11. Cintas LM, Casaus P, Herranz C, Nes IF, Hernández PE (2001) Bacteriocins of lactic acid bacteria. Food Sci Technol Int 7(4):281–305

    Article  CAS  Google Scholar 

  12. Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Pept Sci 55(1):50–61

    Article  CAS  Google Scholar 

  13. Passerini D, Beltramo C, Coddeville M, Quentin Y, Ritzenthaler P, Daveran-Mingot M-L, Bourgeois PL (2010) Genes but not genomes reveal bacterial domestication of Lactococcus lactis. PLoS ONE 5(12):e15306

    Article  Google Scholar 

  14. Casalta E, Montel M-C (2008) Safety assessment of dairy microorganisms: the Lactococcus genus. Int J Food Microbiol 126(3):271–273

    Article  CAS  Google Scholar 

  15. Williams AM, Fryer JL, Collins MD (1990) Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol Lett 68(1–2):109–113

    Article  CAS  Google Scholar 

  16. Itoi S, Yuasa K, Washio S, Abe T, Ikuno E, Sugita H (2009) Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish. J Appl Microbiol 107(3):867–874

    Article  CAS  Google Scholar 

  17. Klijn N, Weerkamp AH, de Vos WM (1995) Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl Environ Microbiol 61(2):788–792

    CAS  Google Scholar 

  18. Flórez AB, Ammor MS, Mayo B (2008) Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci. Int J Food Microbiol 121(2):189–194

    Article  Google Scholar 

  19. Elliott JA, Facklam RR (1996) Antimicrobial susceptibilities of Lactococcus lactis and Lactococcus garvieae and a proposed method to discriminate between them. J Clin Microbiol 34(5):1296–1298

    CAS  Google Scholar 

  20. Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M (1997) Antibiotic resistance spread in food. Nature 389(6653):801–802

    Article  CAS  Google Scholar 

  21. Cotter PD, Hill C, Ross RP (2005) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6:61–75

    Article  CAS  Google Scholar 

  22. Delves-Broughton J (2005) Nisin as a food preservative. Food Aust 57(12):525–532

    CAS  Google Scholar 

  23. Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635

    Article  CAS  Google Scholar 

  24. Trmčić A, Samelis J, Monnet C, Rogelj I, Matijašić BB (2011) Complete nisin A gene cluster from Lactococcus lactis M78 (HM219853)-obtaining the nucleic acid sequence and comparing it to other published nisin sequences. Genes Genom 33(3):217–221

    Article  Google Scholar 

  25. Araújo C, Muñoz-Atienza E, Nahuelquín Y, Poeta P, Igrejas G, Hernández PE, Herranz C, Cintas LM (2014) Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Anaerobe 32:7–14

    Article  Google Scholar 

  26. Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, del Campo R, Hernández PE, Herranz C, Cintas LM (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13(1):15

    Article  Google Scholar 

  27. Klare I, Konstabel C, Müller-Bertling S, Reissbrodt R, Huys G, Vancanneyt M, Swings J, Goossens H, Witte W (2005) Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Appl Environ Microbiol 71(12):8982–8986

    Article  CAS  Google Scholar 

  28. EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740–2749

    Google Scholar 

  29. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41

    Article  CAS  Google Scholar 

  30. Zhou JS, Gopal PK, Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol 63(1–2):81–90

    Article  CAS  Google Scholar 

  31. Noriega L, Cuevas I, Margolles A, de los Reyes-Gavilán CG (2006) Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int Dairy J 16:850–855

    Article  CAS  Google Scholar 

  32. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635

    Article  CAS  Google Scholar 

  33. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19(24):6823–6831

    Article  CAS  Google Scholar 

  34. Cintas LM, Casaus P, Fernández MF, Hernández PE (1998) Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol 15(3):289–298

    Article  CAS  Google Scholar 

  35. Muñoz-Atienza E, Landeta G, de las Rivas B, Gómez-Sala B, Muñoz R, Hernández PE, Cintas LM, Herranz C (2011) Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int J Food Microbiol 146(2):212–216

    Article  Google Scholar 

  36. Versalovic J, Schneider M, de Bruijn F, Lupski R (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  37. Cintas LM, Rodríguez JM, Fernández MF, Sletten K, Nes IF, Hernández PE, Holo H (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61(7):2643–2648

    CAS  Google Scholar 

  38. Mulders JWM, Boerrigter IJ, Rollema HS, Siezen RJ, de Vos WM (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 201(3):581–584

    Article  CAS  Google Scholar 

  39. FAO/WHO (2006) Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food Nutri Pap 85:1–50

    Google Scholar 

  40. Walther C, Rossano A, Thomann A, Perreten V (2008) Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol 131(3–4):348–357

    Article  CAS  Google Scholar 

  41. Flórez AB, Danielsen M, Korhonen J, Zycka J, von Wright A, Bardowski J, Mayo B (2007) Antibiotic survey of Lactococcus lactis strains to six antibiotics by Etest, and establishment of new susceptibility-resistance cut-off values. J Dairy Res 74(03):262–268

    Article  Google Scholar 

  42. Perin LM, Miranda RO, Todorov SD, Franco BD, Nero LA (2014) Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185:121–126

    Article  CAS  Google Scholar 

  43. Hummel AS, Hertel C, Holzapfel WH, Franz CMAP (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73(3):730–739

    Article  CAS  Google Scholar 

  44. Toomey N, Bolton D, Fanning S (2010) Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 161(2):127–135

    Article  CAS  Google Scholar 

  45. Devirgiliis C, Barile S, Caravelli A, Coppola D, Perozzi G (2010) Identification of tetracycline- and erythromycin-resistant gram-positive cocci within the fermenting microflora of an Italian dairy food product. J Appl Microbiol 109(1):313–323

    CAS  Google Scholar 

  46. Kim DH, Austin B (2008) Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus mykiss) intestine. Lett Appl Microbiol 47(3):141–147

    Article  CAS  Google Scholar 

  47. Buňková L, Buňka F, Hlobilová M, Vakátková Z, Nováková D, Dráb V (2009) Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus. Eur Food Res Technol 229(3):533–538

    Article  Google Scholar 

  48. European Commission, 2005. Commission Regulation (EU) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. O J L 338/1

  49. Arias LG, Fernández D, Sacristán N, Arenas R, Fresno JM, Tornadijo E (2013) Enzymatic activity, surface hydrophobicity and biogenic amines production in lactic acid bacteria isolated from an artisanal Spanish cheese. Afr J Microbiol Res 7(19):2114–2118

    Google Scholar 

  50. de Llano DG, Cuesta Rodríguez (1998) Biogenic amine production by wild lactococcal and leuconostoc strains. Lett Appl Microbiol 26(4):270–274

    Article  Google Scholar 

  51. Santos WC, Souza MR, Cerqueira MMOP, Glória MBA (2003) Bioactive amines formation in milk by Lactococcus in the presence or not of rennet and NaCl at 20 and 32°C. Food Chem 81(4):595–606

    Article  CAS  Google Scholar 

  52. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651

    Article  CAS  Google Scholar 

  53. Ruseler-van Embden JG, van Lieshout LM, Gosselink MJ, Marteau P (1995) Inability of Lactobacillus casei strain GG, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand J Gastroenterol 30(7):675–680

    Article  CAS  Google Scholar 

  54. Kelly W, Ward L, Leahy S (2010) Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol Evol 2:729–744

    Google Scholar 

  55. Ventura M, Zink R (2002) Specific identification and molecular typing analysis of Lactobacillus johnsonii by using PCR-based methods and pulsed-field gel electrophoresis. FEMS Microbiol Lett 217(2):141–154

    Article  CAS  Google Scholar 

  56. Dal Bello B, Rantsiou K, Bellio A, Zeppa G, Ambrosoli R, Civera T, Cocolin L (2010) Microbial ecology of artisanal products from north west of Italy and antimicrobial activity of the autochthonous populations. LWT Food Sci Technol 43(7):1151–1159

    Article  CAS  Google Scholar 

  57. Parapouli M, Delbès-Paus C, Kakouri A, Koukkou A-I, Montel M-C, Samelis J (2013) Characterization of a wild, novel nisin A-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype isolated from Greek raw milk. Appl Environ Microbiol 79(11):3476–3484

    Article  CAS  Google Scholar 

  58. Rademaker JLW, Herbet H, Starrenburg MJC, Naser SM, Gevers D, Kelly WJ, Hugenholtz J, Swings J, van Hylckama Vlieg JET (2007) Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting. Appl Environ Microbiol 73(22):7128–7137

    Article  CAS  Google Scholar 

  59. Khemariya P, Singh S, Nath G, Gulati AK (2014) Diversity analysis, batch fermentation and characterization of nisin in identified strains of Lactococcus lactis spp. lactis. Food Biotechnol 28(2):142–161

    Article  CAS  Google Scholar 

  60. Ture M, Altinok I, Capkin E (2015) Comparison of pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR and biochemical tests to characterize Lactococcus garvieae. J Fish Dis 38(1):37–47

    Article  CAS  Google Scholar 

  61. Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y (2010) Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 8(4):1153–1177

    Article  CAS  Google Scholar 

  62. Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81(4):591–606

    Article  CAS  Google Scholar 

  63. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. PNAS 104(18):7617–7621

    Article  CAS  Google Scholar 

  64. Cintas LM, Casaus P, Herranz C, Håvarstein LS, Holo H, Hernández PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent Enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed Enterocin Q. J Appl Bacteriol 182(23):6806–6814

    Article  CAS  Google Scholar 

  65. Basanta A, Gómez-Sala B, Sánchez J, Diep DB, Herranz C, Hernández PE, Cintas LM (2010) Use of the yeast Pichia pastoris as an expression host for secretion of enterocin L50, a leaderless two-peptide (L50A and L50B) bacteriocin from Enterococcus faecium L50. Appl Environ Microbiol 76(10):3314–3324

    Article  CAS  Google Scholar 

  66. Schneider N, Werkmeister K, Pischetsrieder M (2011) Analysis of nisin A, nisin Z and their degradation products by LCMS/MS. Food Chem 127(2):847–854

    Article  CAS  Google Scholar 

  67. Immonen T, Ye S, Ra R, Qiao M, Paulin L, Saris PEJ (1995) The codon usage of the nisZ operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. Mitochondr DNA 5(4):203–218

    Article  CAS  Google Scholar 

  68. Siegers K, Entian KD (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61(3):1082–1089

    CAS  Google Scholar 

  69. Rauch PJ, De Vos WM (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Appl Bacteriol 174(4):1280–1287

    CAS  Google Scholar 

  70. Heo W-S, Kim E-Y, Kim Y-R, Hossain MT, Kong I-S (2012) Salt effect of nisin Z isolated from a marine fish on the growth inhibition of Streptococcus iniae, a pathogen of streptococcosis. Biotechnol Lett 34(2):315–320

    Article  CAS  Google Scholar 

  71. Alegría Á, Delgado S, Roces C, López B, Mayo B (2010) Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Int J Food Microbiol 143(1–2):61–66

    Article  Google Scholar 

  72. Mitra S, Chakrabartty P, Biswas S (2007) Production of nisin Z by Lactococcus lactis isolated from Dahi. Appl Microbiol Biotechnol 143(1):41–53

    CAS  Google Scholar 

  73. Park S-H, Itoh K, Kikuchi E, Niwa H, Fujisawa T (2003) Identification and characteristics of nisin Z-producing Lactococcus lactis subsp. lactis isolated from kimchi. Curr Microbiol 46(5):0385–0388

    Article  CAS  Google Scholar 

  74. Noonpakdee W, Santivarangkna C, Jumriangrit P, Sonomoto K, Panyim S (2003) Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. Int J Food Microbiol 81(2):137–145

    Article  CAS  Google Scholar 

  75. Koral G, Tuncer Y (2012) Nisin Z-producing Lactococcus lactis subsp. lactis GYl32 isolated from boza. J Food Process Pres 38(3):1044–1053

    Article  Google Scholar 

  76. Swetwiwathana A, Zendo T, Nakayama J, Sonomoto K (2009) Identification of nisin Z producing Lactococcus lactis N12 associated with traditional Thai fermented rice noodle (Kanom Jien). As J Food Ag-Ind 2(2):116–125

    Google Scholar 

  77. Cai Y, Ng LK, Farber JM (1997) Isolation and characterization of nisin-producing Lactococcus lactis subsp. lactis from bean-sprouts. J Appl Microbiol 83(4):499–507

    Article  CAS  Google Scholar 

  78. Millette M, Cornut G, Dupont C, Shareck F, Archambault D, Lacroix M (2008) Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl Environ Microbiol 74(7):1997–2003

    Article  CAS  Google Scholar 

  79. de Kwaadsteniet M, ten Doeschate K, Dicks LMT (2008) Characterization of the structural gene encoding Nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl Environ Microbiol 74(2):547–549

    Article  Google Scholar 

  80. Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R (1999) A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 43(4):925–929

    CAS  Google Scholar 

  81. Coton M, Coton E, Lucas P, Lonvaud A (2004) Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol 21(2):125–130

    Article  CAS  Google Scholar 

  82. de las Rivas B, Marcobal Á, Carrascosa AV, Muñoz R (2006) PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. J Food Protect 69(10):2509–2514

    CAS  Google Scholar 

  83. Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Müller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59(5):900–912

    Article  CAS  Google Scholar 

  84. Le Jeune C, Lonvaud-Funel A, Ten Brink B, Hofstra H, Van der Vossen JMBM (1995) Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Bacteriol 78(3):316–326

    Article  Google Scholar 

  85. Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J (1999) Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother 43(5):1062–1066

    CAS  Google Scholar 

  86. Marcobal A, De Las Rivas B, Moreno-Arribas MV, Muñoz R (2005) Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. J Food Protect 68(4):874–878

    CAS  Google Scholar 

  87. Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres C (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111(3):234–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by project AGL2012-34829 from Ministerio de Economía y Competitividad (MINECO, Madrid, Spain) and by Grants S-2009/AGR-1489 and P2013/ABI-2747 from Dirección General de Universidades e Investigación, Consejería de Educación, Comunidad de Madrid (CAM, Madrid, Spain). C. Araújo holds a predoctoral fellowship granted by Fundação para a Ciência e a Tecnologia (FCT, Portugal) and European Social Fund (ESF) (SFRH/BD/62416/2009). E. Muñoz-Atienza is recipient of a predoctoral fellowship from the Universidad Complutense de Madrid (Madrid, Spain). We deeply acknowledge Rosa del Campo for her assistance in fingerprinting analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Cintas.

Ethics declarations

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, C., Muñoz-Atienza, E., Ramírez, M. et al. Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Eur Food Res Technol 241, 647–662 (2015). https://doi.org/10.1007/s00217-015-2493-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2493-z

Keywords

Navigation