Skip to main content
Log in

Biotechnological activities from yeasts isolated from olive oil mills

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The yeast biota associated to three eastern Spain oil mills has been evaluated. Each environment has associated a characteristic number and variability of yeasts. The D1/D2 rDNA sequencing protocol has been proved to be a useful method to identify 216 yeasts from oleic environments, showing us Candida (several species), Saccharomyces paradoxus, Citeromyces matritensis and Cryptococcus sp. as the most representative genera. Moreover, a further screening of biochemical activities has provided us with a collection of isolates able to metabolize different substrates. In particular, protease, β-glucosidase, pectinase, polygalacturonase, xylanase, lipase, esterase and catalase activities were investigated. The majority of the strains showed moderate or high β-glucosidase, lipase and pectinase activities, while protease and polygalacturonase activities are less frequent. In a second step, nutritional competition assays were carried out to investigate the antagonic effect of yeasts associated to olive oil mills with Aspergillus fungi. Yeasts can be an effective biocontrol tool as they can colonize olives and compete for space and nutrients with pathogenic fungi, avoiding the use of chemical fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giannoutsou EP, Meintanis C, Karagouni AD (2004) Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation. Bioresour Technol 93:301–306

    Article  CAS  Google Scholar 

  2. Jones CE, Murphy PJ, Russell NJ (2000) Diversity and osmoregulatory responses of bacteria isolated from two-phase olive oil extraction waste products. World J Microbiol Biotechnol 16:555–561

    Article  CAS  Google Scholar 

  3. Hernández A, Martín A, Aranda E, Pérez-Nevado F, Córdoba MG (2007) Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol 24:346–351

    Article  Google Scholar 

  4. Panagou EZ, Schillinger U, Franz CMAP, Nychas GJE (2008) Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol 25:348–358

    Article  CAS  Google Scholar 

  5. Romo-Sánchez S, Alves-Baffi M, Arévalo-Villena M, Úbeda-Iranzo J, Briones-Pérez A (2010) Yeast biodiversity from oleic ecosystems: study of their biotechnological properties. Food Microbiol 27:487–492

    Article  Google Scholar 

  6. Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A (2008) Role of yeasts in table olive production. Int J Food Microbiol 128:189–196

    Article  Google Scholar 

  7. Fernandez-González M, Espinosa JC, Ubeda J, Briones AI (2001) Yeasts present during wine fermentation: comparative analysis of conventional plating and PCR–TTGE. Syst Appl Microbiol 24:639–644

    Article  Google Scholar 

  8. Florenzano G, Margheri MC, Pelasi E (1973) Recherches sur la microflore des olives, pates grignons et sur l’activite lipolitique des especes predominates. Inf Oleicoles Int 60–61:145–151

    Google Scholar 

  9. Rodríguez-Gómez F, Arroyo-López FN, López-López A, Bautista-Gallego J, Garrido-Fernández A (2010) Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiol 27:604–612

    Article  Google Scholar 

  10. Esti M, Cinquanta L, La Notte E (1998) Phenolic compounds in different olive varieties. J Agric Food Chem 46:32–35

    Article  CAS  Google Scholar 

  11. Ciafardini G, Zullo BA (2002) Microbiological activity in stored olive oil. Int J Food Microbiol 75:111–118

    Article  CAS  Google Scholar 

  12. Lipworth L, Martínez ME, Angell J, Hsieh CC, Trichopoulos D (1997) Olive oil and human cancer: an assessment of the evidence. Prev Med 26:181–190

    Article  CAS  Google Scholar 

  13. Jemai H, Bouaziz M, Fki I, El Feki A, Sayadi S (2008) Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem Biol Interact 176:88–98

    Article  CAS  Google Scholar 

  14. Rozzi A, Malpei F (1996) Treatment and disposal of olive mill effluents. Int Biodeterior Biodegrad 38:135–144

    Article  Google Scholar 

  15. Roussos S, Zaoula N, Salih G, Tantaoui-Elaraki A, Lamrani K, Cheheb M, Hassouni H, Verhé F, Perraud-Gaime I, Augur C, Ismaili-Alaoui M (2006) Characterization of filamentous fungi isolated from moroccan olive and olive cake: toxinogenic potential of aspergillus strains. Mol Nutr Food Res 50:500–506

    Article  CAS  Google Scholar 

  16. Leontopoulos D, Siafaka A, Markaki P (2003) Black olives as substrate for Aspergillus parasiticus growth and aflatoxin B1 production. Food Microbiol 20:119–126

    Article  CAS  Google Scholar 

  17. Papachristou A, Markaki P (2004) Determination of ochratoxin a in virgin olive oils of Greek origin by immunoaffinity column clean-up and high-performance liquid chromatography. Food Addit Contam 21:85–92

    Article  CAS  Google Scholar 

  18. Bleve F, Grieco G, Cozzi A, Logrieco A (2006) Visconti isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. Int J Food Microbiol 108:204–209

    Article  Google Scholar 

  19. Katsifas EA, Giannoutsou EP, Karagouni AD (1999) Diversity of streptomycetes among specific Greek terrestrial ecosystems. Lett Appl Microbiol 29:48–51

    Article  Google Scholar 

  20. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Chapter  Google Scholar 

  21. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeast from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  22. Strauss MCA, Jolly NP, Lambrechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190

    Article  CAS  Google Scholar 

  23. Arévalo M, Úbeda JF, Briones AI (2007) Glucosidase activity in wine yeasts: application in enology. Enzyme Microb Technol 40:420–425

    Article  Google Scholar 

  24. Oliveira RQ, Rosa CA, Uetanabaro AP, Azeredo A, Neto AG, Assis SA (2009) Polygalacturonase secreted by yeasts from Brazilian semi-arid environments. Int J Food Sci Nutr 60(Suppl 7):72–80

    Article  CAS  Google Scholar 

  25. Whittenbury R (1964) Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. Microbiology 35:13–26

    CAS  Google Scholar 

  26. Virgili R, Simoncini N, Toscani T, Camardo-Leggieri M, Formenti S, Battilani P (2012) Biocontrol of Penicillium nordicum growth and ochratoxin a production by native yeasts of dry cured ham. Toxins 4:68–82

    Article  CAS  Google Scholar 

  27. Tofalo R, Perpetuini G, Schirone M, Suzzi G, Corsetti A (2013) Yeast biota associated to naturally fermented table olives from different Italian cultivars. Int J Food Microbiol 161:203–208

    Article  CAS  Google Scholar 

  28. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeast from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  29. Yu T, Li HY, Zheng XD (2007) Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections. Int J Food Microbiol 114:61–266

    Article  Google Scholar 

  30. Meng XH, Qin GZ, Tian SP (2010) Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT-Food Sci Technol 43:596–601

    Article  CAS  Google Scholar 

  31. Brozzoli V, Crognale S, Sampedro I, Federici F, D’Annibale A, Petruccioli M (2009) Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresour Technol 10:3395–3402

    Article  Google Scholar 

  32. Gonçalves C, Lopes M, Ferreira JP, Belo I (2009) Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresour Technol 100:3759–3763

    Article  Google Scholar 

  33. Encinas JP, López-Dı́az TM, Garcı́a-López ML, Otero A, Moreno B (2000) Yeast populations on Spanish fermented sausages. Meat Sci 54:203–208

    Article  CAS  Google Scholar 

  34. Brežná B, Zenišová K, Chovanová K, Chebeňová V, Kraková L, Kuchta T, Pangallo D (2010) Evaluation of fungal and yeast diversity in Slovakian wine-related microbial communities. Antonie Van Leeuwenhoek 98:519–529

    Article  Google Scholar 

  35. Cadez N, Raspor P, Turchetti B, Cardinali G, Ciafardini G, Veneziani G, Péter G (2012) Candida adriatica sp. nov. and Candida molendinolei sp. nov., two yeast species isolated from olive oil and its by-products. Int J Syst Evol Microbiol 62:2296–2302

    Article  CAS  Google Scholar 

  36. Coton E, Coton M, Levert D, Casaregola S, Sohier D (2006) Yeast ecology in French cider and black olive natural fermentations. Int J Food Microbiol 108:130–135

    Article  CAS  Google Scholar 

  37. Sinigaglia M, Di Benedetto N, Bevilacqua A, Corbo MR, Capece A, Romano P (2010) Yeasts isolated from olive mill wastewaters from southern Italy: technological characterization and potential use for phenol removal. Appl Microbiol Biotechnol 87:2345–2354

    Article  CAS  Google Scholar 

  38. Lopez-Gallego F, Betancor L, Hidalgo A, Dellamora-Ortiz G, Mateo C, Fernández-Lafuente R, Guisán JM (2007) Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme Microb Technol 40:278–284

    Article  CAS  Google Scholar 

  39. Bolivar JM, Wilson L, Ferrarotti SA, Fernandez-Lafuente R, Guisan JM, Mateo C (2007) Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme Microb Technol 40:540–546

    Article  CAS  Google Scholar 

  40. El-Ghaouth A, Wilson CL, Wisniewski M (1998) Ultrastructural and cytochemical aspects of the biological control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology 88:282–291

    Article  CAS  Google Scholar 

  41. Arras G, Pani G, Molinu MG, Dore A, Venditti T, Petretto A, Marceddu S, D’Hallewin G (2010) Synergic interactions between 2-deoxy-d-glucose and Candida saitoana enhances citrus green mould control. Commun Agric Appl Biol Sci 75:555–562

    CAS  Google Scholar 

  42. Molinu MG, Pani G, Venditti T, Dore A, Ladu G, D’Hallewin G (2011) Sequential application of NaHCO3, CaCl2 and Candida oleophila (isolate 13L) affects significantly Penicillum expansum growth and the infection degree in apples. Commun Agric Appl Biol Sci 76:743–750

    CAS  Google Scholar 

  43. Massart S, De Clercq D, Salmon M, Dickburt C, Jijakli MH (2005) Development of real-time PCR using minor groove binding probe to monitor the biological control agent Candida oleophila (strain O). J Microbiol Methods 60:73–82

    Article  CAS  Google Scholar 

  44. Wisniewski M, Wilson C, Droby S, Chalutz E, El-Ghaouthn A, Stevens C (2007) Postharvest biocontrol: new concepts and applications. In: Vincent C, Goettal MS, Lazarovits G (eds) Biological control: a global perspective. CABI, Cambridge, pp 262–273

    Chapter  Google Scholar 

  45. Bastiaanse H, de Lapeyre de Bellaire L, Lassois L, Mission C, Jijakli MH (2010) Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biol Control 53:100–107

    Article  CAS  Google Scholar 

  46. Maicas S, Mateo JJ (2005) Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Appl Microbiol Biotechnol 67:322–355

    Article  CAS  Google Scholar 

  47. Gómez-Rico A, Fregapane G, Salvador MD (2008) Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res Int 41:433–440

    Article  Google Scholar 

  48. Fernández M, Úbeda JF, Briones AI (2000) Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int J Food Microbiol 59:29–36

    Article  Google Scholar 

  49. Arévalo-Villena M, Úbeda-Iranzo JF, Cordero-Otero RR, Briones-Pérez AI (2005) Optimization of a rapid method for studying the cellular location of β-glucosidase activity in wine yeasts. J Appl Microbiol 99:558–564

    Article  Google Scholar 

  50. De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: effect of different enzyme activities and levels. Biochem Eng J 41:149–156

    Article  Google Scholar 

  51. Federici F (1985) Production, purification and partial characterization of an endopolygalacturonase from Cryptococcus albidus var. albidus. Antonie Van Leeuwenhoek 51:139–150

    Article  CAS  Google Scholar 

  52. Restuccia C, Muccilli S, Palmeri R, Randazzo CL, Caggia C, Spagna G (2011) An alkaline β-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus. FEMS Yeast Res 11:487–493

    Article  CAS  Google Scholar 

  53. Marquina D, Peres C, Caldas FV, Marques JF, Peinado JM, Spencer-Martins I (1992) Characterization of the yeast population in olive brines. Lett Appl Microbiol 14:279–283

    Article  Google Scholar 

  54. Zullo BA, Cioccia G, Ciafardini G (2013) Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage. Food Microbiol 36:70–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the project “Isolation of enzymes with industrial interest from food waste materials” supported by grant INV-AE112-66049 from the Universitat de València, Spain.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Maicas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilao, J., Mateo, J.J. & Maicas, S. Biotechnological activities from yeasts isolated from olive oil mills. Eur Food Res Technol 240, 357–365 (2015). https://doi.org/10.1007/s00217-014-2335-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2335-4

Keywords

Navigation