Skip to main content
Log in

Effect of brine immersion freezing on the determination of ecological tracers in fish

European Food Research and Technology Aims and scope Submit manuscript

Abstract

The use of a multi-ecological tracer approach provides valuable and complementary insights to investigate the complex biology and ecology of large pelagic fish. Brine immersion freezing is the most common preservation technique used onboard for large fish to be frozen whole until they are delivered for sale and processing. We evaluated the effect of brine freezing on lipid and fatty acid composition, C and N stable isotope ratios, and organochlorine contaminant levels of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis). Fresh tunas were stored in a saturated sodium chlorine brine immersion tank maintained at −20 °C for 6 weeks, and ecological tracers were analysed on dorsal muscle samples collected before and after brine freezing. No significant effect of the fish preservation technique was found except for δ15N whose signatures slightly increased after a 6-week period of brine immersion. Because N isotopic shift was close to the analytical precision and probably related to a higher risk of salt penetration in small tunas with abraded skin, we consider our results as conservative and conclude that ecological tracers can indeed be analysed on brine-freezing-preserved tunas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ariz J, Chavance P, Delgado de Molina A, Murua H (2010) European scheme of observers on board purse-seiners in the Indian Ocean. Mahé, IOTC Proceedings of Victoria, p 45

    Google Scholar 

  2. Arrington DA, Winemiller KO (2002) Preservation effects on stable isotope analysis of fish muscle. Trans Am Fish Soc 131:337–342

    Article  CAS  Google Scholar 

  3. Aubourg SP, Gallardo JM (2005) Effect of brine freezing on the rancidity development during the frozen storage of small pelagic fish species. Eur Food Res Technol 220:107–112

    Article  CAS  Google Scholar 

  4. Aubourg S, Ugliano M (2002) Effect of brine pre-treatment on lipid stability of frozen horse mackerel (Trachurus trachurus). Eur Food Res Technol 215:91–95

    Article  CAS  Google Scholar 

  5. Balshaw S, Edwards JW, Daughtry BJ, Ross KE (2012) Risk-benefit analysis of fish consumption: fatty acid and mercury composition of farmed southern bluefin tuna, Thunnus maccoyii. Food Chem 131:977–984

    Article  CAS  Google Scholar 

  6. Barrow LM, Bjorndal KA, Reich KJ (2008) Effects of preservation method on stable carbon and nitrogen isotope values. Physiol Biochem Zool 81:688–693

    Article  Google Scholar 

  7. Biswas BK, Ji S-C, Biswas AK, Seoka M, Kim Y-S, Kawasaki K-i, Takii K (2009) Dietary protein and lipid requirements for the Pacific bluefin tuna Thunnus orientalis juvenile. Aquaculture 288:114–119

    Article  CAS  Google Scholar 

  8. Bodin N, Budzinski H, Le Ménach K, Tapie N (2009) ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms. Anal Chim Acta 643:54–60

    Article  CAS  Google Scholar 

  9. Bodin N, N’Gom Ka R, Le Loc’h F, Raffray J, Budzinski H, Peluhet L, Tito de Morais L (2011) Are exploited mangrove molluscs exposed to persistent organic pollutant contamination in Senegal, West Africa? Chemosphere 84:318–327

    Article  CAS  Google Scholar 

  10. Burns FD (1985) Tuna handling and refrigeration, NOAA Technical Memorandum NMFS, NOAA-NMFS-SWR-011, USA

  11. Cardona L, Alvarez de Quevedo I, Borrell A, Aguilar A (2012) Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS ONE 7:e31329

    Article  CAS  Google Scholar 

  12. Chaouqy N-E, Gallardo JM, El Marrakchi A, Aubourg SP (2008) Lipid damage development in anchovy (Engraulis encrasicholus) muscle during storage under refrigerated conditions. Grasas Aceites 59:309–315

    CAS  Google Scholar 

  13. Chapman L (1990) Making the grade ice slurries get top marks for quality product. Aust Fish 7:16–19

    Google Scholar 

  14. Corsolini S, Sara G, Borghesi N, Focardi S (2007) HCB, p, p’-DDE and PCB ontogenetic transfer and magnification in bluefin tuna (Thunnus thynnus) from the Mediterranean Sea. Environ Sci Technol 41:4227–4233

    Article  CAS  Google Scholar 

  15. Cury P, Shannon LJ, Shin Y-J (2003) The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M, Valdimarsson G (eds) Responsible fisheries in the marine ecosystem. FAO and CABI publishing, Rome, pp 103–123

    Chapter  Google Scholar 

  16. de Léon P, Valdivia SI (1994) Studies for preservation of sardine in brine. Mem Fac Fish Hokkaido Univ 41:1–104

    Google Scholar 

  17. De Niro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  Google Scholar 

  18. De Niro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  Google Scholar 

  19. Deng JC (1977) Effect of freezing and frozen storage on salt penetration into fish muscle immersed in brine. J Food Sci 42:348–351

    Article  CAS  Google Scholar 

  20. Dickhut RM, Deshpande AD, Cincinelli A, Cochran MA, Corsolini S, Brill RW, Secor DH, Graves JE (2009) Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ Sci Technol 43:8522–8527

    Article  CAS  Google Scholar 

  21. FAO, WHO (1993) Report, fats and oils in human nutrition. Food and Agricultural Organization of the United Nations, Rome, pp 49–55 8. The British Nutrition Foundation. Recommendations

    Google Scholar 

  22. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  23. Fonteneau A, Lucas V, Tewkai E, Delgado A, Demarcq H (2008) Mesoscale exploitation of a major tuna concentration in the Indian Ocean. Aquat Living Resour 21:109–121

    Article  Google Scholar 

  24. Fougére H (1952) The water transfer in codfish muscle immersed in sodium chloride solutions. Fish Res Board Can 9:388

    Article  Google Scholar 

  25. Gallart-Jornet L, Barat JM, Rustad T, Erikson U, Escriche I, Fito P (2007) A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). J Food Eng 79:261–270

    Article  Google Scholar 

  26. Goñi N, Arrizabalaga H (2010) Seasonal and interannual variability of fat content of juvenile albacore (Thunnus alalunga) and bluefin (Thunnus thynnus) tunas during their feeding migration to the Bay of Biscay. Prog Oceanogr 86:115–123

    Article  Google Scholar 

  27. Graham JB, Koehrn FJ, Dickson KA (1983) Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to locomotion and endothermy. Can J Zool 61:2087–2096

    Article  Google Scholar 

  28. Graham B, Grubbs D, Holland K, Popp B (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150:647–658

    Article  Google Scholar 

  29. Grande M (2013) The reproductive biology, condition and feeding ecology of the skipjack, Katsuwonus pelamis, in the Western Indian Ocean. PhD Thesis, University of Basque Country, 229 p

  30. Hebert CE, Arts MT, Weseloh DVC (2006) Ecological tracers can quantify food web structure and change. Environ Sci Technol 40:5618–5623

    Article  CAS  Google Scholar 

  31. Iverson SJ, Field C, Don Bowen W, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235

    Article  Google Scholar 

  32. Jittinandana S, Kenney PB, Slider SD, Kiser RA (2002) Effect of brine concentration and brining time on quality of smoked rainbow trout fillets. J Food Sci 67:2095–2099

    Article  CAS  Google Scholar 

  33. Jusup M, Klanjscek T, Matsuda H, Kooijman SALM (2011) A full lifecycle bioenergetic model for bluefin tuna. PLoS ONE 6:e21903

    Article  CAS  Google Scholar 

  34. Kannan K, Corsolini S, Imagawa T, Focardi S, Giesy JP (2002) Polychlorinated -naphthalenes, -biphenyls, -dibenzo-p-dioxins, -dibenzofurans and p, p’-DDE in bluefin tuna, swordfish, cormorants and barn swallows from Italy. AMBIO. J Hum Environ 31:207–211

    Google Scholar 

  35. Kaplan DM, Planes S, Fauvelot C, Brochier T, Lett C, Bodin N, Loc’h L, Tremblay Y, Georges JY (2010) New tools for the spatial management of living marine resources. Curr Opin Environ Sustain 2:88–93

    Article  Google Scholar 

  36. Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566

    Article  CAS  Google Scholar 

  37. Logan JM, Lutcavage ME (2012) Assessment of trophic dynamics of cephalopods and large pelagic fishes in the central North Atlantic Ocean using stable isotope analysis. Deep Sea Res Part II Top Stud Oceanogr 95:63–73

    Article  Google Scholar 

  38. Lubis Z, Buckle K (1990) Rancidity and lipid oxidation of dried-salted sardines. Int J Food Sci Technol 25:295–303

    Article  CAS  Google Scholar 

  39. Medina I, Aubourg S, Pérez Martín R (1995) Composition of phospholipids of white muscle of six tuna species. Lipids 30:1127–1135

    Article  CAS  Google Scholar 

  40. Ménard F, Lorrain A, Potier M, Marsac F (2007) Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar Biol 153:141–152

    Article  Google Scholar 

  41. Mourente G, Megina C, Díaz-Salvago E (2001) Lipids in female northern bluefin tuna (Thunnus thynnus thynnus L.) during sexual maturation. Fish Physiol Biochem 24:351–363

    Article  CAS  Google Scholar 

  42. Nakamura Y-N, Ando M, Seoka M, Kawasaki K-i, Tsukamasa Y (2007) Changes of proximate and fatty acid compositions of the dorsal and ventral ordinary muscles of the full-cycle cultured Pacific bluefin tuna Thunnus orientalis with the growth. Food Chem 103:234–241

    Article  CAS  Google Scholar 

  43. Padula DJ, Daughtry BJ, Nowak BF (2008) Dioxins, PCBs, metals, metalloids, pesticides and antimicrobial residues in wild and farmed Australian southern bluefin tuna (Thunnus maccoyii). Chemosphere 72:34–44

    Article  CAS  Google Scholar 

  44. Parrish CC (1999) Determination of total lipids, lipids classes and fatty acids in aquatic samples. In: Wainman BC, Arts MT (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–20

    Chapter  Google Scholar 

  45. Potier M, Sabatié R, Ménard F, Marsac F (2001) Preliminary results of tuna diet studies in the West Equatorial Indian Ocean. IOTC proceedings 2001-WPTT-03, pp 273–278

  46. Rasmussen RS, Morrissey MT, Carroll S (2006) Effect of seasonality, location, and size on lipid content in North Pacific troll-caught albacore tuna (Thunnus alalunga). J Aquat Food Prod Technol 15:73–86

    Article  Google Scholar 

  47. Revill A, Young J, Lansdell M (2009) Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Mar Biol 156:1241–1253

    Article  Google Scholar 

  48. Saito H, Ishihara K, Murase T (1997) The fatty acid composition in tuna (bonito, Euthynnus pelamis) caught at three different localities from tropics to temperate. J Sci Food Agric 73:53–59

    Article  CAS  Google Scholar 

  49. Sprague M, Dick JR, Medina A, Tocher DR, Bell JG, Mourente G (2012) Lipid and fatty acid composition, and persistent organic pollutant levels in tissues of migrating Atlantic bluefin tuna (Thunnus thynnus, L.) broodstock. Environ Pollut 171:61–71

    Article  CAS  Google Scholar 

  50. Stefansson G, Hultin HO (1994) On the solubility of cod muscle proteins in water. J Agric Food Chem 42:2656–2664

    Article  CAS  Google Scholar 

  51. Stevens ED, Neill WH (1978) Body temperature relations of tunas, especially skipjack. In: Hoar WS, Randall DJ (eds) Fish physiology, vol VII. Academic, New York, pp 315–359

    Google Scholar 

  52. Takiguchi A (1989) Effect of NaCl on the oxidation and hydrolysis of lipids in salted sardine fillets during storage. Nippon Suisan Gakkaishi 55:1649–1654

    Article  CAS  Google Scholar 

  53. Tambo T, Yamada N, Kitada N (1992) Change in myofibrillar protein of fish muscle caused by soaking in NaCl solution. Bull Jpn Soc Sci Fish 58:677–683

    Article  CAS  Google Scholar 

  54. Tanabe S, Iwata H, Tatsukawa R (1994) Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci Total Environ 154:163–177

    Article  CAS  Google Scholar 

  55. Torres JPM, Munschy C, Heas-Moisan K, Potier M, Ménard F, Bodin N (2009) Organohalogen compounds in yellowfin tuna (Thunnus albacares) from the Western Indian Ocean. Organohalog Compd 71:1915–1920

    Google Scholar 

  56. Ueno D, Iwata H, Tanabe S, Ikeda K, Koyama J, Yamada H (2002) Specific accumulation of persistent organochlorines in bluefin tuna collected from Japanese coastal waters. Mar Pollut Bull 45:254–261

    Article  CAS  Google Scholar 

  57. Ueno D, Takahashi S, Tanaka H, Subramanian AN, Fillmann G, Nakata H, Lam PKS, Zheng J, Muchtar M, Prudente M, Chung KH, Tanabe S (2003) Global pollution monitoring of PCBs and organochlorine pesticides using skipjack tuna as a bioindicator. Arch Environ Contam Toxicol 45:378–389

    Article  CAS  Google Scholar 

  58. Vizzini S, Tramati C, Mazzola A (2010) Comparison of stable isotope composition and inorganic and organic contaminant levels in wild and farmed bluefin tuna, Thunnus thynnus, in the Mediterranean Sea. Chemosphere 78:1236–1243

    Article  CAS  Google Scholar 

  59. Vlieg P, Murray T, Body DR (1993) Nutritional data on six oceanic pelagic fish species from New Zealand waters. J Food Compos Anal 6:45–54

    Article  CAS  Google Scholar 

  60. Watanabe T, Murase T, Saito HLE (1995) Specificity of fatty acid composition of highly migratory fish. A comparison of docosahexaenoic acid content in total lipids extracted in various organs of bonito (Euthynnus pelamis). Comp Biochem Physiol Part B Biochem Mol Biol 111:691–695

    Article  Google Scholar 

  61. Wheeler SC, Morrissey MT (2003) Quantification and distribution of lipid, moisture, and fatty acids of West Coast albacore tuna (Thunnus alalunga). J Aquat Food Prod Technol 12:3–16

    Article  CAS  Google Scholar 

  62. Zudaire I, Murua H, Grande M, Arsenault-Pernet E-J, Pernet F, Bodin N (2014) Accumulation and mobilization of lipids in relation with reproduction and fecundity in the yellowfin tuna (Thunnus albacares), Western Indian Ocean. Fishery Research. http://dx.doi.org/10.1016/j.fishres.2013.12.010

Download references

Acknowledgments

We are grateful to ORTHONGEL, the crew of the Cap Sainte Marie, especially Christian Monfort, for providing valuable information on tuna freezing aboard purse seiners and supplying us with brine for the experiment. This work is a contribution of the Agence Nationale de la Recherche EMOTION project (ANR 11 JSV7 007 01).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Bodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodin, N., Lucas, V., Dewals, P. et al. Effect of brine immersion freezing on the determination of ecological tracers in fish. Eur Food Res Technol 238, 1057–1062 (2014). https://doi.org/10.1007/s00217-014-2210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2210-3

Keywords

Navigation