Skip to main content
Log in

Analysis of saponins as bioactive zoochemicals from the marine functional food sea cucumber Bohadschia cousteaui

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The edible portion of sea cucumber, body walls, is a source of natural bioactive compounds. Triterpene saponins are the main chemical constituents in sea cucumber that have potential interest for the body health and food industry. Twenty-one lanostane-type non-sulphated triterpene glycosides were isolated from the methanol/methylene chloride extract of the body walls of Bohadschia cousteaui. Ten new saponins called coustesides A (1), B (3), C (9), D (10), E (11), F (12), G (15), H (16), I (17) and J (18), including two pentasaccharide and eight hexasaccharide saponins, together with eleven known triterpene glycosides, were isolated by reversed-phase semi-preparative HPLC. Their structures were mainly determined by 1D- and 2D-NMR (1H, 13C, COSY, TOCSY, HSQC, HMBC and ROESY) as well as MS experiments and acid hydrolysis. Most of the isolated compounds showed good antifungal activity against Candida albicans. Moreover, sea cucumber B. cousteaui is a rich source of biologically active saponins. Therefore, sea cucumbers are eaten for their therapeutic values as a functional food than for their seafood taste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Webb GP (2006) An overview of dietary supplements and functional food. In dietary supplements and functional foods, 1st edn. Blackwell Publishing, Oxford, UK, pp 1–35

    Book  Google Scholar 

  2. Shahidi F (2009) Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Tech 20:376–387

    Article  CAS  Google Scholar 

  3. Hu SY (2005) Food plants of China. Chinese University Press, Hong Kong, China, p 3–11, 275–278

  4. Venugopal V (2009) Marine habitat and resources. In: Venugopal V (ed) Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. CRC Press Taylor & Francis Group, Boca Raton, FL, pp 23–50

    Google Scholar 

  5. Lawrence AJ (2006) Darwin initiative for the sustainable use of sea cucumber in Egypt. Darwin Final Report Part 4 Oct 04

  6. Chen J (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Inform Bull 18:18–23

    Google Scholar 

  7. Jiaxin C (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Inform Bull 18:1–6

    Google Scholar 

  8. Zhong Y, Khan MA, Shahidi F (2007) Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa). J Agri Food Chem 55:1188–1192

    Article  CAS  Google Scholar 

  9. Bordbar S, Anwar F, Saari N (2001) High-value components and bioactives from sea cucumbers for functional foods–A Review. Mar Drugs 9:1761–1805

    Article  Google Scholar 

  10. Gurfinkel DM, Rao AV (2003) Soysaponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr Cancer 47:24–33

    Article  CAS  Google Scholar 

  11. Kim SW, Park SK, Kang SI, Kang HC, Oh HJ, Bae CY, Bae DH (2003) Hypocholesterolemic property of Yucca schidigera and Quillaja saponaria extracts in human body. Arch Pharmacol Res 26:1042–1046

    Article  CAS  Google Scholar 

  12. Özlem GÜ, Giuseppe M (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258

    Article  Google Scholar 

  13. Elbandy M, Kang OH, Kwon DY, Rho JR (2009) Two new anti-inflammatory triterpene saponins from the Egyptian medicinal food black cumin (seeds of Nigella sativa). Bull Korean Chem Soc 30:1811–1816

    Article  CAS  Google Scholar 

  14. Elbandy M, Ashoush I (2012) Phytochemicals in pomegranate seeds and their effect as hypolipidemic agent in hypercholesterolemic rats. World J Dairy Food Sci 7(1):85–92

    CAS  Google Scholar 

  15. Elbandy M, Rho JR, Afifi R. (2011) Analysis of triterpene saponins of the nutraceutical foods sea cucumber, (Bohadschia cousteaui) by using nuclear magnetic resonance and mass spectrometry. In Proceeding of ICFST‒ China 2011, 9th International Conference Food Science Technology, China: Hangzhou

  16. Elbandy M, Miyamoto T, Delaude C, Lacaille-Dubois MA (2002) Five new medicagenic acid saponins from Muraltia ononidifolia. Helv Chim Acta 85:2721–2728

    Article  CAS  Google Scholar 

  17. Naoki SA, Atsuko TB, Takako SC, Kazunori AD (2010) Development of an absolute quantification method for organic compounds using quantitative NMR (qNMR) and improvement of the reliability of food analysis. Tetrahedron 57:9563–9568

    Google Scholar 

  18. Xue RN, Fan L, Rieser MJ, El-Shourbagy TA (2007) Recent advances in high throughput quantitative bioanalysis by LC-MS/MS. J Pharmaceut Biomed Anal 44:342–355

    Article  Google Scholar 

  19. NCCLS (2004) Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline. NCCLS document M44-A (ISBN 1-56238-532-1). NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA

  20. Van Rossum JMV (1963) The relation between chemical structure and biological activity–A Review. J Pharml Pharmacol 15(1):285–316

    Article  CAS  Google Scholar 

  21. Kitagawa I, Kobayashi M, Inamoto T, Fuchida M, Kyogoku Y (1989) Marine natural products. XIV. Structures of echinosides A and B, antifungal lanostane oligosides from the sea cucumber Actinopyga echinities (Jaeger). Chem Pharma Bull 33:5214–5224

    Article  Google Scholar 

  22. Kitagawa I, Kobayashi M, Hori M, Kyogoku Y (1985) Marine natural products. VIII. Four lanostane-type triterpene oligoglycosides, bivittosides A, B, C, and D, from the okinawan sea cucumber Bohadschia bivittata Mitsukuri. Chem Pharma Bull 37:61–67

    Article  Google Scholar 

  23. Sun P, Liu BS, Yi YH, Li L, Gui M, Tang HF, Zhang DZ, Zhang SL (2007) A new cytotoxic lanostane-type triterpene glycoside from the sea cucumber Holothuria impatiens. Chem Biodivers 4:450–457

    Article  CAS  Google Scholar 

  24. Stonik VA, Kalinin VI, Avilov SA (1999) Toxins from sea cucumbers (Holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins 8:235–248

    CAS  Google Scholar 

  25. Avilov SA, Kalinin VI, Smirnov AV (2004) Use of triterpene glycosides for resolving taxonomic problems in the sea cucumber genus Cucumaria (Holothurioidea, Echinodermata). Biochem Syst Ecol 32:715–733

    Article  CAS  Google Scholar 

  26. Breitmaier E, Voelter W (1987) Carbon-13 NMR Spectroscopy. VCH, Weinheim

    Google Scholar 

  27. Liu BS, Yi YH, Li L, Sun P, Yuan WH, Sun GQ, Han H, Xue M (2008) Argusides B and C, two new cytotoxic triterpene glycosides from the sea cucumber Bohadschia argus Jaeger. Chem Biodivers 5:1228–1297

    Google Scholar 

  28. Kalinin VI, Silchenko AS, Avilov SA, Stonic VA, Smirnov AV (2005) Sea cucumber triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Phytochem Rev 4:221–236

    Article  CAS  Google Scholar 

  29. Wu J, Yi YH, Tang HF, Wu HM, Zhou ZR (2007) Hillasides A and B, two new cytotoxic triterpene glycosides from the sea cucumber Holothuria hilla Lesson. J Asian Nat Prod Res 9:609–615

    Article  CAS  Google Scholar 

  30. Murray AP, Muniain C, Seldes AM, Maier MS (2001) Patagonicoside A: a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus. Tetrahedron 57:9563–9568

    Article  CAS  Google Scholar 

  31. Yuan WH, Yi YH, Tang HF, Liu BS, Wang ZL, Sun GQ, Zhang W, Li L, Sun P (2009) Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata. Planta Med 75:168–173

    Article  CAS  Google Scholar 

  32. Sun GQ, Li L, Yi YH, Yuan WH, Liu BS, Weng YY, Zhang SL, Sun P, Wang ZL (2008) Two new cytotoxic nonsulfated pentasaccharide holostane (= 20-hydroxylanostan-18-oic acid γ-lactone) glycosides from the sea cucumber Holothuria grisea. Helv Chim Acta 91:145–1460

    Google Scholar 

  33. Yuan WH, Yi YH, Tan RX, Wang ZL, Sun GQ, Xue M, Zhang HW, Tang HF (2009) Antifungal triterpene glycosides from the sea cucumber Holothuria (Microthele) axiloga. Planta Med 75:647–653

    Article  CAS  Google Scholar 

  34. Ohta T, Hikino H (1981) Structures of four new triterpenoidal oligoglycosides, bivittoside A, B, C and D from the sea cucumber Bohadschia bivittata Mitsukuri. Chem Pharma Bull 29:282–285

    Article  Google Scholar 

  35. Dyck SV, Gerbaux P, Flammang P (2009) Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comparative Biochem Physiol Part B 152:124–134

    Article  Google Scholar 

Download references

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elbandy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbandy, M., Rho, J.R. & Afifi, R. Analysis of saponins as bioactive zoochemicals from the marine functional food sea cucumber Bohadschia cousteaui . Eur Food Res Technol 238, 937–955 (2014). https://doi.org/10.1007/s00217-014-2171-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2171-6

Keywords

Navigation