Skip to main content
Log in

Aptamer-based rapid visual biosensing of melamine in whole milk

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A rapid and facile visual method for the detection of melamine (MA) in whole milk based on aptamer-modified gold nanoparticles (AuNPs) was described in this paper. This strategy combined aptamer as a MA recognition element with AuNPs as the color indicator, providing a rapid and on-site detection of MA by naked eyes or UV–Vis spectrometer. The whole analytical process could finish in 30 min without any assistance of any instrument. Under the optimized condition, the proposed method could be used to detect MA in whole milk with a detection limit of 1.5 mg/L in naked eyes and 0.5 mg/L with UV–Vis spectrometer. The simple rapid technique provided a promising tool for on-site screening of MA adulterant in milk as well as in-house diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chan EY, Griffiths SM, Chan CW (2008) Public-health risks of melamine in milk products. Lancet 372:1444–1445

    Article  CAS  Google Scholar 

  2. Brown CA, Jeong KS, Poppenga RH, Puschner B, Miller DM, Ellis AE, Kang KI, Sum S, Cistola AM, Brown SA (2007) Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J Vet Diagn Invest 19:525–531

    Article  Google Scholar 

  3. Puschner B, Poppenga RH, Lowenstine LJ, Filigenzi MS, Pesavento PA (2007) Assessment of melamine and cyanuric acid toxicity in cats. J Vet Diagn Invest 19:616–624

    Article  Google Scholar 

  4. Interim safety and risk assessment of melamine and its analogues in food for humans. http://www.fda.gov/OHRMS/DOCKETS/98fr/FDA-2008-N-0574-bkg.pdf Accessed 3 may 2013.

  5. Chou SS, Hwang DF, Lee HF (2003) High performance liquid chromatographic determination of cyromazine and its derivative melamine in poultry meats and eggs. J Food Drug Anal 11:290–295

    CAS  Google Scholar 

  6. Andersen WC, Turnipseed SB, Karbiwnyk CM, Clark SB, Madson MR, Gieseker CM, Miller RA, Rummel NG, Reimschuessel R (2008) Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry. J Agric Food Chem 56:4340–4347

    Article  CAS  Google Scholar 

  7. Miao H, Fan S, Zhou PP, Zhang L, Zhao YF, Wu YN (2010) Determination of melamine and its analogues in egg by gas chromatography-tandem mass spectrometry using an isotope dilution technique. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(11):1497–1506

    Article  CAS  Google Scholar 

  8. Xia JG, Zhou NY, Liu YJ, Chen B, Wu YN, Yao SZ (2010) Simultaneous determination of melamine and re-lated compounds by capillary zone electrophoresis. Food Control 21:912–918

    Article  CAS  Google Scholar 

  9. Tang X, Shi X, Tang Y, Yue Z, He Q (2012) Flow-injection chemiluminescence determination of melamine in urine and plasma. Luminescence 27:229–233

    Article  CAS  Google Scholar 

  10. Cao H, Hu X, Hu C, Zhang Y, Jia N (2013) A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy)3(2+)/mesoporous silica nanospheres/Nafion composite modified electrode. Biosens Bioelectron 41:911–915

    Article  CAS  Google Scholar 

  11. Yazgan NN, Boyacı IH, Topcu A, Tamer U (2012) Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles. Anal Bioanal Chem 403:2009–2017

    Article  CAS  Google Scholar 

  12. Han S, Zhu S, Liu Z, Hu L, Parveen S, Xu G (2012) Oligonucleotide-stabilized fluorescent silver nanoclusters for turn-on detection of melamine. Biosens Bioelectron 36:267–270

    Article  CAS  Google Scholar 

  13. Lachenmeier DW, Humpfer E, Fang F, Schütz B, Dvortsak P, Sproll C, Spraul M (2009) NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: the example of melamine. J Agric Food Chem 57(16):7194–7199

    Article  CAS  Google Scholar 

  14. Venkatasami G, Sowa JR (2010) A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Anal Chim Acta 665:227–230

    Article  CAS  Google Scholar 

  15. Tzing SH, Ding WH (2010) Determination of melamine and cyanuric acid in powdered milk using injection-port derivatization and gas chromatography-tandem mass spectrometry with furan chemical ionization. J Chromatogr A 1217:6267–6273

    Article  CAS  Google Scholar 

  16. Zhou Y, Li CY, Li YS, Ren HL, Lu SY, Tian XL, Hao YM, Zhang YY, Shen QF, Liu ZS, Meng XM, Zhang JH (2012) Monoclonal antibody based inhibition ELISA as a new tool for the analysis of MA in milk and pet food samples. Food Chem 135:2681–2686

    Article  CAS  Google Scholar 

  17. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  18. Kunii T, Ogura S, Mie M, Kobatake E (2011) Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst 136:1310–1312

    Article  CAS  Google Scholar 

  19. Jiang Z, Zhou L, Liang A (2011) Resonance scattering detection of trace melamine using aptamer-modified nanosilver probe as catalyst without separation of its aggregations. Chem Commun 47:3162–3164

    Article  CAS  Google Scholar 

  20. Zeng Y, Pratumyot Y, Piao X, Bong D (2012) Discrete assembly of synthetic peptide-DNA triplex structures from polyvalent melamine-thymine bifacial recognition. J Am Chem Soc 134:832–835

    Article  CAS  Google Scholar 

  21. Wang Y, Yang F, Yang X (2010) Colorimetric biosensing of mercury (II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998

    Article  CAS  Google Scholar 

  22. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 36:3780–3782

    Article  Google Scholar 

  23. Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2 + using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    Article  CAS  Google Scholar 

  24. Liu F, Zhang J, Chen R, Chen L, Deng L (2011) Highly effective colorimetric and visual detection of ATP by a DNAzyme–aptamer sensor. Chem Biodivers 8:311–316

    Article  CAS  Google Scholar 

  25. Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679

    Article  CAS  Google Scholar 

  26. Chen CK, Huang CC, Chang HT (2010) Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosens Bioelectron 5:1922–1927

    Article  Google Scholar 

  27. Chen SJ, Huang YF, Huang CC, Lee KH, Lin ZH, Chang HT (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23:1749–1753

    Article  CAS  Google Scholar 

  28. Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W (2012) Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Anal Chim Acta 753:27–31

    Article  CAS  Google Scholar 

  29. Mei Z, Chu H, Chen W, Xue F, Liu J, Xu H, Zhang R, Zheng L (2013) Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosens Bioelectron 39:26–30

    Article  CAS  Google Scholar 

  30. Doron A, Katz E, Willner I (1995) Organization of Au colloids as monolayer films onto ITO GLASS SURFACES: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313–1317

    Article  CAS  Google Scholar 

  31. Kim JH, Estabrook RA, Braun G, Lee BR, Reich NO (2007) Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle–RNA–fluorescent dye conjugates. Chem Commun 42:4342–4344

    Article  Google Scholar 

  32. Li H, Rothberg L (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  33. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 28:3780–3782

    Article  Google Scholar 

  34. Wei H, Li B, Li J, Dong S, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Article  Google Scholar 

  35. Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee DK, Hong S, Kim S (2011) Development of single-stranded DNA aptamers for specific Bisphenol a detection. Oligonucleotides 21:85–91

    Article  CAS  Google Scholar 

  36. Lu C, Zu Y, Yam VWW (2007) Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Anal Chem 79(2):666–672

    Article  CAS  Google Scholar 

  37. Huang H, Li L, Zhou G, Liu Z, Ma Q, Feng Y, Zeng G, Tinnefeld P, He Z (2011) Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Talanta 85:1013–1019

    Article  CAS  Google Scholar 

  38. Xing HB, Wu YG, Zhan SS, Zhou P (2013) A Rapid Colorimetric Detection of Melamine in Raw Milk by Unmodified Gold Nanoparticles. Food Anal Methods 6(5):1441–1447

    Google Scholar 

  39. Li L, Li B, Cheng D, Mao L (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122(3):895–900

    Article  CAS  Google Scholar 

  40. Ping H, Zhang M, Li H, Li S, Chen Q, Sun C, Zhang T (2012) Visual detection of melamine in raw milk by label-free silver nanoparticles. Food Control 23(1):191–197

    Article  CAS  Google Scholar 

  41. Ai K, Liu Y, Lu L (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131(27):9496–9497

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Scientific and Research Project of General Administration of Quality Supervision, Inspection Quarantine (AQSIQ) of China (No. 2013QK007), National Natural Science Foundation of China (Grant No. 61307103) and the West Light Foundation of Chinese Academy of Sciences for financial support of this work.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, W., Li, H., Chen, S. et al. Aptamer-based rapid visual biosensing of melamine in whole milk. Eur Food Res Technol 238, 989–995 (2014). https://doi.org/10.1007/s00217-014-2166-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2166-3

Keywords

Navigation