Skip to main content
Log in

Non-isoflavone phytoestrogenic compound contents of various legumes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Widely consumed legumes including chickpeas, red kidney beans, haricot beans, yellow lentils, red lentils and green lentils were analysed to determine the content of non-isoflavone phytoestrogenic compounds such as quercetin, rutin, apigenin, coumestrol and lignan (matairesinol and secoisolariciresinol). Methanolic extracts obtained by ultrasound-assisted extraction were analysed by the triple quadrupole LC–MS/MS. Red kidney beans were the best source of quercetin (603.2 ± 307.2 μg/kg) and rutin (73.4 ± 14.0 μg/kg). Apigenin and secoisolariciresinol contents were the highest in yellow lentils (18.5 ± 0.84 μg/kg) and haricot beans (451.9 ± 192.2 μg/kg), respectively. Coumestrol contents of haricot beans (18.5 ± 1.45 μg/kg) and red kidney beans (18.5 ± 1.26 μg/kg) were equal to each other, and these were determined as the highest coumestrol content values. The best sources of matairesinol occurred in green lentils (28.2 ± 0.18 μg/kg) and chickpeas (27.7 ± 1.83 μg/kg). Differences between contents of each sample of the same legume were significant and remarkable, especially for quercetin and secoisolariciresinol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Espin JC, Garcia-Conesa MT, Tomas-Barberan FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2908–3006

    Article  Google Scholar 

  2. Key PE, Finglas PM, Coldham N, Botting N, Oldfield MF, Wood R (2006) An international quality assurance scheme for the quantitation of daidzein and genistein in food, urine and plasma. Food Chem 96(2):261–272

    Article  CAS  Google Scholar 

  3. Adlercreutz H, Mazur W (1998) Overview of naturally occuring endocrine-active substances in human diet. In: Dunalf GE, Olin SS, Scimeca JA, Thomas JA (eds) Human diet and endocrine modulation. ILSI Press, Washington, DC, pp 134–285

    Google Scholar 

  4. Fritz KL, Seppanen CM, Kurzer MS, Csallany AS (2003) The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutr Res 23:479–487

    Article  CAS  Google Scholar 

  5. Prakash D, Upadhyay G, Singh BN, Singh BN (2007) Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem 104(2):783–790

    Article  CAS  Google Scholar 

  6. Committee on Toxicity of Chemicals in Food (2003) Consumer products and the environment. Phytoestrogens and Health. Food Standards Agency, London

    Google Scholar 

  7. Gülçin İ, Elias R, Gepdinemen A (2006) Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol 223:759–767

    Article  Google Scholar 

  8. Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46(3):207–219

    Article  CAS  Google Scholar 

  9. Schwartz H, Sontag G, Plumb J (2009) Inventory of phytoestrogen databases. Food Chem 113:736–747

    Article  CAS  Google Scholar 

  10. Antignac JP, Gaudin-Hirret I, Naegeli H, Cariou R, Elliot C, Le Bizec B (2009) Multi functional sample preparation procedure for measuring phytoestrogens in milk, cereals and baby food by liquid-chromatography tandem mass spectrometry with subsequent determination of their estrogenic activity using transcriptomic assay. Anal Chim Acta 637:55–63

    Article  CAS  Google Scholar 

  11. Bacaloni A, Cavaliere C, Faberi A, Foglia P, Samperi R, Lagana A (2005) Determination of isoflavones and coumestrol in river water and domestic wastewater sewage treatment plants. Anal Chim Acta 531(2):229–237

    Article  CAS  Google Scholar 

  12. Kirihata Y, Kawarabayashi T, Imasishi S, Sugimoto M, Kume SI (2008) Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice. J Reprod Dev 54(1):35–41

    Article  CAS  Google Scholar 

  13. Hong YH, Wang SC, Hsu C, Lin BF, Kuo YH, Huang CJ (2011) Phytoestrogenic compounds in alfalfa sprout (Medicago sativa) beyond coumestrol. J Agric Food Chem 59(1):131–137

    Article  CAS  Google Scholar 

  14. Sun JS, Li YY, Liu MH, Sheu SY (2007) Effects of coumestrol on neonatal and adult mice osteoblasts activities. J Biomed Mater Res A 81(1):214–223

    Google Scholar 

  15. Kuiper GGJM, Lemmen JG, Carlsson BO, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263

    Article  CAS  Google Scholar 

  16. Moon HJ, Seak JH, Kim SS, Rhee GS, Lee RD, Yang JY, Chae SY, Kim SH, Kim JY, Chung JY, Kim JM, Chung SY (2009) Lactational coumestrol exposure increases ovarian apoptosis in adult rats. Arch Toxicol 83:601–608

    Article  CAS  Google Scholar 

  17. Ndebele K, Graham B, Tchouwou PB (2010) Estrogenic activity of coumestrol, DDT, and TCDD in human cervical cancer cells. Int J Environ Res Public Health 7:2045–2056

    Article  CAS  Google Scholar 

  18. Hanske L, Loh G, Sczesny S, Blaut M, Braune A (2009) The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr 139:1095–1102

    Article  CAS  Google Scholar 

  19. Rezai-Zadeh K, Erhart J, Bai Y, Sanberg PR, Bickford P, Tan J, Shytle RD (2008) Apigenin and luteolin modulate microglial activation via inhibition of STATI-induced CD 40 expression. J Neuroinflammation 5:41–51

    Article  Google Scholar 

  20. Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102:1414–1420

    Article  Google Scholar 

  21. Franzen CA, Amargo E, Todorovic V (2009) The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signalling mechanism. Cancer Prev Res 2(9):830–841

    Article  CAS  Google Scholar 

  22. Siddique YH, Beg T, Afzal M (2008) Antigenotoxic effect of apigenin aganist anti-cancerous drugs. Toxicol In Vitro 22:625–631

    Article  CAS  Google Scholar 

  23. Miyoshi N, Naniwa K, Yamada T, Osawa T, Nakamura Y (2007) Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: The role in the interruptive apoptotic signal. Arch Biochem Biophys 466:274–282

    Article  CAS  Google Scholar 

  24. Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemo prevention: progress, potential and promise. Int J Oncol 30:233–245

    CAS  Google Scholar 

  25. Zhao M, Ma U, Zhu HY, Zhang XH, Du ZY, Xu YJ (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc 37 and Hsp 90. Mol Cancer 10:104–118

    Article  CAS  Google Scholar 

  26. Aalinekel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz JA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68:1773–1789

    Article  Google Scholar 

  27. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325

    Article  CAS  Google Scholar 

  28. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  Google Scholar 

  29. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148

    Article  CAS  Google Scholar 

  30. Middleton EJ, Kandaswamic C (1986) The impact of plant flavonoids on mammalian biology: implication for immunity, inflammation and cancer. In: Harborne JB (ed) The flavonoids: advances in research since. Chapman & Hall, London, pp 619–652

    Google Scholar 

  31. Moon YJ, Wang L, DiCenzo R, Morris ME (2008) Quercetin pharmacokinetics in humans. Biopharm Drug Dispos 29:205–217

    Article  CAS  Google Scholar 

  32. Morota YJ, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 417:12–17

    Article  Google Scholar 

  33. Gülçin İ (2006) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391

    Article  Google Scholar 

  34. Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulus NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the mediterranean countries. Food Chem 121:682–690

    Article  CAS  Google Scholar 

  35. Kim J, Hong S, Jung W, Yu C, Ma K, Gwag J, Chung I (2007) Comparison of isoflavones composition in seed, embryo, cotyledon and seed coat of cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Food Chem 102:738–744

    Article  CAS  Google Scholar 

  36. Konar N, Poyrazoğlu ES, Demir K, Artık N (2012) Determination of conjugated and free isoflavones in some legumes by LC–MS/MS. J Food Compos Anal 25(2):173–178

    Article  CAS  Google Scholar 

  37. Konar N, Poyrazoglu ES, Demir K, Artık N (2012) Effect of different sample preparation methods on isoflavone, lignan, coumestan, and flavonoid contents of various vegetables determined by triple quadrupole LC-MS/MS. J Food Compos Anal 26(1–2):26–35

    Article  CAS  Google Scholar 

  38. Truswell AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56:1–14

    Article  CAS  Google Scholar 

  39. Demirbaş A (2005) β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 90:737–777

    Google Scholar 

  40. Giannakoula AE, Ilias IF, Maksimovic JJD, Maksimovic VM, Zivanovic BD (2012) The effects of plant growth regulators or growth yield, and phenolic profile of lentil plants. J Food Compos Anal 28:46–53

    Article  CAS  Google Scholar 

  41. Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44

    Article  CAS  Google Scholar 

  42. Wu Q, Wang M, Simon SJE (2004) Analytical methods to determine phytoestrogenic compounds. J Chromatogr B 812:325–355

    CAS  Google Scholar 

  43. Mazur W, Duke JA, Wahala K, Raskku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. Nutr Biochem 9:193–200

    Article  CAS  Google Scholar 

  44. Franke A, Custer LJ, Cerna CM, Narala K (1995) Rapid HPLC analysis of dietary phytoestrogens from legumes and human urine. Proc Soc Exp Biol Med 208:18–26

    CAS  Google Scholar 

  45. Oomah B, Patras A, Rawson A, Singh N, Compos-Vega R (2011) In: Tiwari BK, Gowen A, McKenna B (eds) Pulse foods. Academic Press, London

    Google Scholar 

  46. Kuhnle GGC, Dell’Aquila C, Aspinall SM, Runswick SA, Joosen AMCP, Mulligan AA, Bingham SA (2009) Phytoestrogen content of fruits and vegetables commonly consumed in the UK based on LC–MS and 13C-labelled standards. Food Chem 116:542–554

    Article  CAS  Google Scholar 

  47. Clarke DB, Bailey V, Lloyd AS (2008) Determination of phytoestrogens in soy based dietary supplements by LC–MS/MS. Food Addit Contam 25(5):534–547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevzat Konar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konar, N. Non-isoflavone phytoestrogenic compound contents of various legumes. Eur Food Res Technol 236, 523–530 (2013). https://doi.org/10.1007/s00217-013-1914-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-1914-0

Keywords

Navigation