Skip to main content
Log in

Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study investigated the compositions of anthocyanins in blackberry juice and the effect of heating (70, 80, and 90 °C) on individual anthocyanins, as well as its impact on antioxidant activity. The results showed that five anthocyanins were identified, including cyanidin (Cy)-3-O-glucoside (1), Cy-3-O-arabinoside (2), Cy-3-O-malonyl-glucoside (3), Cy-3-O-dioxalyl-glucoside (4), and the Cy derivative (5). The degradation rates of individual anthocyanins (1–4) followed the first-order reaction kinetics. Unexpectedly, the amount of the Cy derivative (5) was observed to slightly increase in temperature. At the same temperature, the half-lives (T 1/2) values of each anthocyanin (1–4) significantly differed (P < 0.05). Maximum of the T 1/2 values were observed with Cy-3-O-dioxalyl-glucoside (T 1/2 values ranged 9.48–3.54 h) and exhibited relatively resistant stability. Moreover, the T 1/2 values of Cy-3-O-glucoside were higher than Cy-3-O-arabinoside and Cy-3-O-malonyl-glucoside. The antioxidant activity of blackberry juice reduced with the decreasing of total anthocyanins. These results demonstrated that the time dependency of anthocyanins degradation and antioxidant capacity were strongly correlated in blackberry juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Catherine Felgines OT, Besson C, Fraisse D, Lamaison J-L, Rémésy C (2002) Blackberry anthocyanins are slightly bioavailable in rats the American Society for Nutritional Sciences. J Nutr 132(1249–1253):2002

    Google Scholar 

  2. Tate P, Kuzmar A, Smith SW, Wedge DE, Larcom LL (2003) Comparative effects of eight varieties of blackberry on mutagenesis. Nutr Res 23(7):971–979

    Article  CAS  Google Scholar 

  3. Tate P, Stanner A, Shields K, Smith S, Larcom L (2006) Blackberry extracts inhibit UV-induced mutagenesis in Salmonella typhimurium TA100. Nutr Res 26(2):100–104. doi:10.1016/j.nutres.2005.11.005

    Article  CAS  Google Scholar 

  4. Bowen-Forbes CS, Zhang Y, Nair MG (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23(6):554–560

    Article  CAS  Google Scholar 

  5. Dai J, Gupte A, Gates L, Mumper RJ (2009) A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem Toxicol 47(4):837–847

    Article  CAS  Google Scholar 

  6. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54(25):9329–9339

    Article  CAS  Google Scholar 

  7. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2001) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, rubus, and ribes. J Agric Food Chem 50(3):519–525

    Article  Google Scholar 

  8. Stintzing FC, Stintzing AS, Carle R, Wrolstad RE (2001) A novel zwitterionic anthocyanin from evergreen blackberry (Rubus laciniatus Willd.). J Agric Food Chem 50(2):396–399

    Article  Google Scholar 

  9. Acosta-Montoya Ó, Vaillant F, Cozzano S, Mertz C, Pérez AM, Castro MV (2010) Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem 119(4):1497–1501

    Article  CAS  Google Scholar 

  10. Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int 44(2):499–509

    Article  CAS  Google Scholar 

  11. Yang Z, Han Y, Gu Z, Fan G, Chen Z (2008) Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn (Zea mays L.) cob. Innov Food Sci Emerg Technol 9(3):341–347

    Article  CAS  Google Scholar 

  12. Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R (2004) Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochemistry 65(4):415–422

    Article  CAS  Google Scholar 

  13. Sadilova E, Stintzing FC, Carle R (2006) Thermal degradation of acylated and nonacylated anthocyanins. J Food Sci 71(8):C504–C512

    Article  CAS  Google Scholar 

  14. Wang W-D, Xu S-Y (2007) Degradation kinetics of anthocyanins in blackberry juice and concentrate. J Food Eng 82(3):271–275

    Article  CAS  Google Scholar 

  15. Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16(9):423–428

    Article  CAS  Google Scholar 

  16. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. Free radical method. LWT—Food Sci Technol 30(6):609–615

    CAS  Google Scholar 

  17. Hanlon PR, Barnes DM (2011) Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. J Food Sci 76(1):C185–C192

    Article  CAS  Google Scholar 

  18. Stintzing FC, Trichterborn J, Carle R (2006) Characterisation of anthocyanin–betalain mixtures for food colouring by chromatic and HPLC–DAD-MS analyses. Food Chem 94(2):296–309

    Article  CAS  Google Scholar 

  19. Tian Q, Giusti MM, Stoner GD, Schwartz SJ (2006) Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry. Food Chem 94(3):465–468

    Article  CAS  Google Scholar 

  20. Fazaeli M, Yousefi S, Emam-Djomeh Z (2011) Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry juices. Food Res Int. doi:10.1016/j.foodres.2011.03.043

  21. Rubinskiene M, Viskelis P, Jasutiene I, Viskeliene R, Bobinas C (2005) Impact of various factors on the composition and stability of black currant anthocyanins. Food Res Int 38(8–9):867–871

    Article  CAS  Google Scholar 

  22. Sadilova E, Stintzing FC, Kammerer DR, Carle R (2009) Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment. Food Res Int 42(8):1023–1033

    Article  CAS  Google Scholar 

  23. Nayak B, Berrios JDJ, Powers JR, Tang J, Ji Y (2011) Colored potatoes (Solanum tuberosum L.) dried for antioxidant-rich value-added foods. J Food Process Preserv 35(5):571–580

    Article  CAS  Google Scholar 

  24. Seeram NP, Bourquin LD, Nair MG (2001) Degradation products of cyanidin glycosides from tart cherries and their bioactivities. J Agric Food Chem 49(10):4924–4929

    Article  CAS  Google Scholar 

  25. Piffaut B, Kader F, Girardin M, Metche M (1994) Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments. Food Chem 50(2):115–120

    Article  CAS  Google Scholar 

  26. Adams JB (1973) Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin. I. In acidified aqueous solution at 100 °C. J Sci Food Agric 24(7):747–762

    Article  CAS  Google Scholar 

  27. Yue X, Xu Z (2008) Changes of anthocyanins, anthocyanidins, and antioxidant activity in bilberry extract during dry heating. J Food Sci 73(6):C494–C499

    Article  CAS  Google Scholar 

  28. Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC (2002) Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem 50(21):5844–5849

    Article  CAS  Google Scholar 

  29. Miyazawa T, Nakagawa K, Kudo M, Muraishi K, Someya K (1999) Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J Agric Food Chem 47(3):1083–1091

    Article  CAS  Google Scholar 

  30. Pacheco-Palencia LA, Talcott ST (2010) Chemical stability of açai fruit (Euterpe oleracea Mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems. Food Chem 118(1):17–25

    Article  CAS  Google Scholar 

  31. Elisia I, Hu C, Popovich DG, Kitts DD (2007) Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem 101(3):1052–1058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Xueming Xu and Guanjun Tao for their contributions to sample analysis. This study was funded by the Independent Innovation of Agricultural Technology Foundation of Jiangsu Province (CX(11)4025) and the Jiangsu Provincial Natural Science Foundation (BK2011683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxin Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhou, J., Liu, H. et al. Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. Eur Food Res Technol 235, 637–645 (2012). https://doi.org/10.1007/s00217-012-1796-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1796-6

Keywords

Navigation