Skip to main content
Log in

Studies concerning the use of Lactobacillus helveticus and Kluyveromyces marxianus for rye sourdough fermentation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the fermentation behaviour, antioxidant activity and rheological behaviour of the sourdoughs prepared with Lactobacillus helveticus and Kluyveromyces marxianus. The final acidity of the sourdough after 18 h of fermentation was higher at higher temperatures (40 °C) and for the formulations with whole rye flour. The highest lactic/acetic acid ratios were obtained in case of more fluid sourdoughs fermented at 40 °C. The antioxidant properties of the sourdoughs are correlated with metabolic activity of the microorganisms, the DPPH radical scavenging activity being higher for optimum conditions of Lactobacillus helveticus growth. On the other hand, the rheological properties of the sourdoughs are not significantly influenced by the temperature. Sourdoughs formulations with whole flour are more viscous, as well as the controls fermented by the spontaneous microflora. The results of the bread-making process simulation by means of Mixolab indicate differences between dough formulations mainly depending on flour type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersson R, Fransson G, Tietjen M, Aman P (2009) Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem 57:2004–2008

    Article  CAS  Google Scholar 

  2. Villauenga CM, Michalska A, Frias J, Piskula MK, Vidal-Valverde C, Zielinski H (2009) Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J Food Sci 74:49–55

    Article  Google Scholar 

  3. Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K (2005) Potential of sourdough for healthier cereal products. Trends Food Sci Tech 16:104–112

    Article  CAS  Google Scholar 

  4. Katina K, Liukkonen KH, Norja AK, Adlercreutz H, Heinonen SM, Lampi AM, Pihlava JM, Poutanen K (2007) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46:348–355

    Article  CAS  Google Scholar 

  5. Hansen A (2006) In: Handbook of food science, technology and engineering, 4th edn. Taylor and Francis Group, LLC, London

  6. Clarke CI, Schober TJ, Angst E, Arendt EK (2003) Use of response surface methodology to investigate the effects of processing conditions on sourdough wheat bread quality. Eur Food Res Technol 217:23–33

    Article  CAS  Google Scholar 

  7. Katina K (2005) Sourdough: a tool for the improved flavour, texture and shelf-life of wheat bread, VTT Technical Research Centre of Finland

  8. Stolz P (2003) Handbook of dough fermentations. Marcel Dekker, New York

    Google Scholar 

  9. Meignen B, Onno B, Gelinas P, Infantes M, Guilois S, Cahagnier B (2001) Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiol 18:239–245

    Article  CAS  Google Scholar 

  10. Plessas S, Fisher A, Koureta K, Psarianos C, Nigam P, Koutinas AA (2008) Application of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus for sourdough bread making. Food Chem 106:985–990

    Article  CAS  Google Scholar 

  11. Plessas S, Bekatorou A, Gallanagh J, Nigam P, Koutinas AA, Psarianos C (2008) Evolution of aroma volatiles during storage of sourdough breads made by mixed cultures of Kluyveromyces marxianus and Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus. Food Chem 107:883–889

    Article  CAS  Google Scholar 

  12. Dimitrellou D, Kandylis P, Kourkoutas Y, Koutinas AA, Kanellaki M (2009) Evaluation of thermally-dried Kluyveromyces marxianus as baker’s yeast. Food Chem 115:691–696

    Article  CAS  Google Scholar 

  13. Hansen A, Schieberle P (2005) Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends Food Sci Technol 16:85–94

    Article  CAS  Google Scholar 

  14. Katina K, Heinio RL, Autio K, Poutanen K (2006) Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT 39:1189–1202

    Article  CAS  Google Scholar 

  15. Arendt EK, Ryan LAM, Bello DF (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    Article  CAS  Google Scholar 

  16. Hung PV, Maeda T, Miyatake K, Morita N (2009) Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res Int 42:185–190

    Article  CAS  Google Scholar 

  17. Gänzle MG, Ehrmann M, Hammes WP (1998) Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl Environ Microb 64:2616–2623

    Google Scholar 

  18. De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56

    Article  Google Scholar 

  19. Kylä-Nikkilä K, Hujanen M, Leisola M, Palva A (2000) Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. App Environ Microbiol 66:3835–3841

    Article  Google Scholar 

  20. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Klantzopoulos G, Tsakalidou E, Messens W (2002) The biodivesity of lactic acid bacteria in Greek traditional wheat sourdough is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069

    Article  Google Scholar 

  21. Pathirana CL, Shahidi F (2007) The antioxidant potential of milling fractions from breadwheat and durum. J Cereal Sci 45:238–247

    Article  Google Scholar 

  22. Zielinski H, Kozlowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48:2008–2016

    Article  CAS  Google Scholar 

  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Evans CR (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  24. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466

    Article  CAS  Google Scholar 

  25. Annuk H, Schepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412

    Article  CAS  Google Scholar 

  26. Virtanen T, Pihlanto A, Akkanen S, Korhonen H (2007) Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J App Microbiol 102:106–115

    Article  CAS  Google Scholar 

  27. Andreasen MF, Christensen LP, Mezer AS, Hansen A (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837–2842

    Article  CAS  Google Scholar 

  28. Glitsot LV, Bach Knudesn KE (1999) Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J Cereal Sci 29:89–97

    Article  Google Scholar 

  29. Ionescu A, Aprodu I, Daraba A, Porneala L (2008) The effects of transglutaminase on the functional properties of the myofibrillar protein concentrate obtained from beef heart. Meat Sci 79:278–284

    Article  CAS  Google Scholar 

  30. Gonzalez-Toma L, Bayarri S, Taylor AJ, Costell E (2008) Rheology, flavor release and perception of low-fat dairy desserts. Int Dairy J 18:858–866

    Article  Google Scholar 

  31. Rosell CM, Collar C, Haros M (2007) Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloid 21:452–462

    Article  CAS  Google Scholar 

  32. Clarke CI, Schober TJ, Arendt EK (2002) Effect of single strain and traditional mixed strain starter culture on rheological properties of wheat dough and on bread quality. Cereal Chem 79:640–647

    Article  CAS  Google Scholar 

  33. Banu I, Vasilean I, Aprodu I (2010) Evaluation of rheological behaviour of whole rye and buckwheat blends with whole wheat flour using Mixolab. Ital J Food Sci 22:83–89

    Google Scholar 

  34. Gudmundsson M, Eliasson AC (1991) Thermal and viscous properties of rye starch extracted from different varieties. Cereal Chem 68:172–177

    CAS  Google Scholar 

  35. Verwimp T, Vandeputte GE, Marrant K, Delcour JA (2004) Isolation and characterisation of rye starch. J Cereal Sci 39:85–90

    Article  CAS  Google Scholar 

  36. Collar C, Bollain C, Rosell CM (2007) Rheological behaviour of formulated bread doughs during mixing and heating. Food Sci Technol Int 13:99–107

    Article  CAS  Google Scholar 

  37. Banu I, Stoenescu G, Ionescu V, Aprodu I (2010) Physicochemical and rheological analysis of flour mill streams. Cereal Chem 87:112–117

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CNCSIS—UEFISCSU, project number PNII—IDEI ID_500/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliana Aprodu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banu, I., Aprodu, I. Studies concerning the use of Lactobacillus helveticus and Kluyveromyces marxianus for rye sourdough fermentation. Eur Food Res Technol 234, 769–777 (2012). https://doi.org/10.1007/s00217-012-1691-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1691-1

Keywords

Navigation