Skip to main content
Log in

Antioxidant capacity and phenolics of Pouteria macrophylla, an under-utilized fruit from Brazilian Amazon

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The potential of fruits occurring in the Amazon with regard to their antioxidant capacity is being addressed increasingly during the last years. In this paper, the antioxidant capacity of fruits from Pouteria macrophylla (cutite) and the compounds which are responsible for that functional property were studied. Diphenyl-picrylhydrazyl (DPPH) and total oxidant scavenging capacity (TOSC) assays were used for the evaluation of antioxidant capacity of fruit aqueous extracts. TOSC assay showed inhibitory effects against peroxyl (TOSC50% = 560 mg/L) and peroxynitrite (TOSC50% = 830 mg/L), two important reactive oxygen species, while DPPH showed that cutite (EC50 = 300 ± 3.9 g/g DPPH) has significant antioxidant capacity, greater than many other known Amazon fruits. It was also seen that the cutite fruits are a good alimentary source of polyphenols (867 ± 8 mg GAE/100 g), analyzed by Folin-Ciocalteu assay. Using HPLC-DAD-ESI-MSn and HPLC-DAD, gallic acid (4.72 mg/g fresh fruit pulp) and digalloyl glucose were found as the main phenolic compounds in the cutite fruits. TOSC assays with HPLC fractions of fruit aqueous extracts show that both compounds are predominantly responsible for the antioxidant capacity observed in the cutite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aruoma OI (2003) Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res 9:523–524

    Google Scholar 

  2. Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C (2008) Challenges for research on polyphenols from foods in Alzheimer’s Disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    Article  CAS  Google Scholar 

  3. Lichtenthäler R, Rodrigues RB, Maia JGS, Papagiannopoulos M, Fabricius H, Marx F (2005) Total oxidant scavenging capacities of Euterpe oleracea Mart. (Açaí) fruits. Int J Food Sci Nutr 56:53–64

    Article  Google Scholar 

  4. Rodrigues RB, Papagiannopoulos M, Maia JGS, Yuyama K, Marx F (2006) Antioxidant capacity of camu camu [Myrciaria dubia (H.B.K.) Mc Vaugh] pulp. Nutrition 30:357–362

    CAS  Google Scholar 

  5. Silva EM, Souza JNS, Rogez H, Rees JF, Larondelle Y (2007) Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem 101:1012–1018

    Article  CAS  Google Scholar 

  6. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  7. Swenson U, Anderberg AA (2005) Phylogeny, character evolution and classification of Sapotaceae (Ericales). Cladistics 21:101–130

    Article  Google Scholar 

  8. Cavalcante PB (1996) Frutas comestíveis da Amazônia. Museu Paraense Emílio Goeldi, Belém

    Google Scholar 

  9. Food and Agricultural Organization of the United Nations (FAO) (1986) Food and fruit-bearing forest species. 3: examples from Latin America. FAO forestry paper 44/3

  10. Silva CAM, Simeoni LA, Silveira D (2009) Genus Pouteria: chemistry and biological activity. Rev Bras Farmacogn 19:501–509

    Article  CAS  Google Scholar 

  11. Ma J, Yang H, Basile MJ, Kennelly EJ (2004) Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. J Agric Food Chem 52:5873–5878

    Article  CAS  Google Scholar 

  12. Maia JGS, Andrade EHA, Zoghbi MGB (2003) Volatiles from fruits of Pouteria pariry (Ducke) Baehni and P. caimito (Ruiz & Pavon) Rdlkl. J Essent Oil Bear Plants 6:127–129

    CAS  Google Scholar 

  13. Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Rad Biol Med 49:503–515

    Article  CAS  Google Scholar 

  14. Tomer DP, Mcleman LD, Ohmine S, Scherer PM, Murray BK, O’neill KL (2007) Comparison of the total oxyradical scavenging capacity and oxygen radical absorbance capacity antioxidant assays. J Med Food 10:337–344

    Article  CAS  Google Scholar 

  15. Lichtenthäler R, Marx F, Kind OM (2003) Determination of antioxidative capacities using an enhanced total oxidant scavenging capacity (TOSC) assay. Eur Food Res Technol 216:163–173

    Google Scholar 

  16. Association of Official Analytical Chemists (AOAC) (1997) Official methods of analysis of the association of the analytical chemists, 16th edn, 3rd revision. Washington, USA

    Google Scholar 

  17. Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MS. J Agric Food Chem 52:3784–3791

    Article  CAS  Google Scholar 

  18. Georgé S, Brat P, Alter P, Amiot MJ (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J Agric Food Chem 53:1370–1373

    Article  Google Scholar 

  19. Rufino MSM, Alves RE, Brito ES, Jimenéz JP, Calixto FDS, Mancini-Filho J (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002

    Article  CAS  Google Scholar 

  20. ICH Harmonized Tripartite Guideline (2005) Validation of analytical procedures: text and methodology Q2 (R1). International Conference on Harmonization (ICH), Geneve

  21. Gordon A, Schadow B, Quijano CE, Marx F (2011) Chemical characterization and antioxidant capacity of berries from Clidemia rubra (Aubl.) Mart. (Melastomataceae). Food Res Int 44:2120–2127

    Article  CAS  Google Scholar 

  22. Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125:288–306

    Article  CAS  Google Scholar 

  23. Wu X, Gu L, Prior RL, Mcka YS (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of ribes, aronia, and sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    Article  CAS  Google Scholar 

  24. Boulekbache-Makhlouf L, Meudec E, Chibane M, Mazauric J-P, Slimani S, Henry M, Cheynier V, Madani K (2010) Analysis by high-performance liquid chromatography diode array detection mass spectrometry of phenolic compounds in fruit of Eucalyptus globules cultivated in Algeria. J Agric Food Chem 58:12615–12624

    Article  CAS  Google Scholar 

  25. Sandhu AK, Gu L (2010) Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (muscadine grapes) as determined by HPLC-DAD-ESI-MSn. J Agric Food Chem 58:4681–4692

    Article  CAS  Google Scholar 

  26. Nuengchamnong N, Ingkaninan K (2009) On-line characterization of phenolic antioxidants in fruit wines from family Myrtaceae by liquid chromatography combined with electrospray ionization tandem mass spectrometry and radical scavenging detection. Food Sci Technol 42:297–302

    CAS  Google Scholar 

  27. Grundhofer P, Niemetz R, Schilling G, Gross GG (2001) Biosynthesis and subcellular distribution of hydrolysable tannins. Phytochemistry 57:915–927

    Article  CAS  Google Scholar 

  28. Tanimura S, Kadomoto R, Tanaka T, Zhang Y, Kouno I, Kohno M (2005) Suppression of tumor cell invasiveness by hydrolysable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem Biophys Res Commun 330:1306–1313

    Article  CAS  Google Scholar 

  29. Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750

    Article  CAS  Google Scholar 

  30. Vasco C, Ruales J, Kamal-Eldin A (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem 111:816–823

    Article  CAS  Google Scholar 

  31. Rufino MSM, Alves RE, Fernandes FAN, Brito ES (2011) Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res Int 44:2072–2075

    Article  CAS  Google Scholar 

  32. Rogez H, Pompeu DR, Akwie SNT, Larondelle Y (2011) Sigmoidal kinetics of anthocyanin accumulation during fruit ripening: a comparison between açai fruits (Euterpe oleracea) and other anthocyanin-rich fruits. J Food Comp Anal 24:796–800

    Article  CAS  Google Scholar 

  33. Ronson RS, Nakamura M, Vinten-Johansen J (1999) The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res 44:47–59

    Article  CAS  Google Scholar 

  34. Maruyama W, Kato Y, Yamamoto T, Oh-hashi K, Hashizume Y, Naoi M (2001) Peroxynitrite induces neuronal cell death in aging and age associated disorders: a review. J Amer Aging Assoc 24:11–18

    CAS  Google Scholar 

  35. Lee J, Koo K, Min DB (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Comp Rev Food Sci Food Saf 3:21–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to MCT/CNPq and FAPESPA/PA for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Guilherme S. Maia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, B.A., Gordon, A., Jungfer, E. et al. Antioxidant capacity and phenolics of Pouteria macrophylla, an under-utilized fruit from Brazilian Amazon. Eur Food Res Technol 234, 761–768 (2012). https://doi.org/10.1007/s00217-012-1684-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1684-0

Keywords

Navigation