Skip to main content
Log in

Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection

  • Special Issue Paper
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract.

The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–1 are quantifiable, with 3σ detection limits determined to be 42.8 nL min–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, D.A., Bornhop, D.J. Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection. Fresenius J Anal Chem 371, 234–237 (2001). https://doi.org/10.1007/s002160101000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002160101000

Keywords

Navigation