Skip to main content
Log in

Highly crosslinking core–shell magnetic nanocomposites based catalyst and heat free polymerization for isolation of glycoprotein

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

New approaches for the engineering of well-defined, pore modality, and multi-chemical functionality nanocomposites are crucial to generate the next generation of functional materials with recoverable and easy preparation properties. Here, a catalyst and heat free polymerization reaction is exploited and fabricated zwitterionic system around magnetic nanoparticles. N-aminoethyl piperazine propane sulfonate (AEPPS) and dopamine (DA) are introduced as the zwitterionic system, which provided abundant zwitterionic groups (NH2, SO3, N+) and strong adhesion and various oxidation state properties. And that, the zwitterionic engineering will assemble between AEPPS and DA whereby Schiff base formation or Michael type addition. Whereafter, a series of sophisticated array of microscopic, spectroscopic, and structure techniques verify the formation of highly crosslinking internal zwitterionic architectures, well-defined core–shell structure, and better porosity. The zwitterionic structure–function relationships and striking porous structure are explored in a multi-interaction adsorption assay. The adsorption capacity of the magnetic nanocomposites was 1065.8 mg/g. And that, the system exhibited with hydrophilic-hydrophobic activity towards glycoprotein and better performance to bioactive protein (Ig-G) isolation form human whole blood sample. The synergistic enhancement interaction in hydrophilic target enrichment, easy preparation, and soft substrate properties of the AEPPS-DA zwitterionic materials make them intriguing candidates for sustainable biomedical loading and chromatographic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites [J]. Chem Soc Rev. 2019;48(16):4424–65.

    Article  CAS  Google Scholar 

  2. Yang Q, Dong Y, Qiu Y, et al. Design of functional magnetic nanocomposites for bioseparation [J]. Colloids Surf B: Biointerfaces. 2020;191: 111014.

    Article  CAS  Google Scholar 

  3. Sun Y, Zheng L, Yang Y, et al. Metal-organic framework nanocarriers for drug delivery in biomedical applications [J]. Nanomicro Lett. 2020;12(1):1–29.

    CAS  Google Scholar 

  4. Cargnello M. Colloidal nanocrystals as building blocks for well-defined heterogeneous catalysts [J]. Chem Mater. 2019;31(3):576–96.

    Article  CAS  Google Scholar 

  5. Zhu XY, Yu JY, Yan YC, et al. One-pot alkali cutting-assisted synthesis of fluorescence tunable amino-functionalized graphene quantum dots as a multifunctional nanosensor for sensing of pH and tannic acid [J]. Talanta. 2020;236: 122874.

    Article  Google Scholar 

  6. Wu Q, Lee J, Sun J, et al. In situ direct growth of graphene/hexagonal boron nitride heterostructure on SiO2 substrate without metal catalyst [J]. Carbon. 2018;138:76–80.

    Article  CAS  Google Scholar 

  7. Song C, Yan Q, Zhang T, et al. Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene [J]. Chem Eng J. 2021;420: 130452.

    Article  CAS  Google Scholar 

  8. Ri SH, Bi F, Guan A, et al. Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation [J]. J Colloid Interface Sci. 2021;586:836–46.

    Article  Google Scholar 

  9. Hai X, Y Li, Zhu C, et al. DNA-based label-free electrochemical biosensors: from principles to applications [J]. TrAC Trends in Analytical Chemistry. 2020;133(2): 116098.

  10. Guo ZY, Zhang C, Jiao RW, et al. Construction of metal hydrate-based amorphous magnetic nanosheets for enhanced protein enrichment and immobilization [J]. ACS Appl Mater Interfaces. 2021;13(31):37915–23.

    Article  CAS  Google Scholar 

  11. Lu Y, Lin J, Wang L, et al. Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure [J]. Chem Rev. 2020;120(9):4111–40.

    Article  CAS  Google Scholar 

  12. Feng L, Wang KY, Powell J, et al. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies [J]. Matter. 2019;1(4):801–24.

    Article  Google Scholar 

  13. Mariani S, La Mattina AA, Paghi A, et al. Maskless preparation of spatially-resolved plasmonic nanoparticles on polydimethylsiloxane via in situ fluoride-assisted synthesis [J]. Adv Funct Mater. 2021;31(26):2100774.

    Article  CAS  Google Scholar 

  14. Hu G, Albrow-Owen T, Jin X, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics [J]. Nat Commun. 2017;8(1):1–10.

    Article  Google Scholar 

  15. Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways [J]. Nature. 2013;500(7460):59–63.

    Article  CAS  Google Scholar 

  16. Zhu XY, Li T, Hai X, et al. A nanozyme-based colorimetric sensor array as electronic tongue for thiols discrimination and disease identification [J]. Biosens Bioelectron. 2022;213: 114438.

    Article  CAS  Google Scholar 

  17. Zou Y, Zhou X, Ma J, et al. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications [J]. Chem Soc Rev. 2020;49(4):1173–208.

    Article  CAS  Google Scholar 

  18. Tan KW, Wiesner U. Block copolymer self-assembly directed hierarchically structured materials from nonequilibrium transient laser heating [J]. Macromolecules. 2019;52(2):395–409.

    Article  CAS  Google Scholar 

  19. Guo Z, Huang G, Zhang C, et al. Amphipathic engineering of magnetic composites reinforced with ion-copolymer-activated protein-bioconjugate functionalized surface [J]. Mater Chem Front. 2022;6(2):237–44.

    Article  CAS  Google Scholar 

  20. Han J, Liu K, Chang R, et al. Photooxidase-mimicking nanovesicles with superior photocatalytic activity and stability based on amphiphilic amino acid and phthalocyanine co-assembly [J]. Angew Chem. 2019;131(7):2022–6.

    Article  Google Scholar 

  21. Guo ZY, Hai X, Wang YT, et al. Core-corona magnetic nanospheres functionalized with zwitterionic polymer ionic liquid for highly selective isolation of glycoprotein [J]. Biomacromol. 2018;19(1):53–61.

    Article  CAS  Google Scholar 

  22. Buzolic JJ, Li H, Aman ZM, et al. Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor [J]. J Colloid Interface Sci. 2022;616:121–8.

    Article  CAS  Google Scholar 

  23. Ji YL, Gu BX, Xie SJ, et al. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal–organic frameworks [J]. Adv Mater. 2021;33(38):2102292.

    Article  CAS  Google Scholar 

  24. Meng QW, Ge Q. Enhancing chlorine resistance and water permeability during forward osmosis separation using superhydrophilic materials with conjugated systems [J]. ACS Appl Mater Interfaces. 2020;12(31):35393–402.

    Article  CAS  Google Scholar 

  25. Narkar AR, Kelley JD, Pinnaratip R, et al. Effect of ionic functional groups on the oxidation state and interfacial binding property of catechol-based adhesive [J]. Biomacromol. 2017;19(5):1416–24.

    Article  Google Scholar 

  26. An QF, Sun WD, Zhao Q, et al. Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers [J]. J Membr Sci. 2013;431:171–9.

    Article  CAS  Google Scholar 

  27. Guo ZY, Zhang Y, Zhang DD, et al. Magnetic nanospheres encapsulated by mesoporous copper oxide shell for selective isolation of hemoglobin [J]. ACS Appl Mater Interfaces. 2016;8(43):29734–41.

    Article  CAS  Google Scholar 

  28. Guo Z, Zhang D, Song S, et al. Complexes of magnetic nanospheres with amphiprotic polymer-Zn systems for the selective isolation of lactoferrin [J]. J Mater Chem B. 2018;6(35):5596–603.

    Article  CAS  Google Scholar 

  29. Jiang W, Fischer G, Girmay Y, et al. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode [J]. J Chromatogr A. 2006;1127(1–2):82–91.

    Article  CAS  Google Scholar 

  30. Guo PF, Wang XM, Wang MM, et al. Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins [J]. Anal Chim Acta. 2019;1088:72–8.

    Article  CAS  Google Scholar 

  31. Fu D, Liu Y, Shen A, et al. Preparation of glutathione-functionalized zwitterionic silica material for efficient enrichment of sialylated N-glycopeptides [J]. Anal Bioanal Chem. 2019;411(18):4131–40.

    Article  CAS  Google Scholar 

  32. Zhang W, Jiang L, Wang D, et al. Preparation of copper tetra (N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides [J]. Anal Bioanal Chem. 2018;410(25):6653–61.

    Article  CAS  Google Scholar 

  33. Petralia L M C, van Diepen A, Lokker L A, et al. Mass spectrometric and glycan microarray-based characterization of the filarial nematode Brugia malayi glycome reveals anionic and zwitterionic glycan antigens [J]. Mol Cell Proteomics, 2022: 100201.

  34. Hu X, Chen Q, Zhang DD, et al. Pyridine boronic acid-polyoxometalate based porous hybrid for efficient depletion of high abundant glycoproteins in plasma [J]. J Mater Chem B. 2018;6(48):8196–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from the National Natural Science Foundation of China (Grant No. 22004105), and special project of the Marine and Fishery Department of Xiamen (No. 19CZB001HJ03). The education and research project of the young and middle-aged teachers of Fujian Province (JAT 200880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Sustainability in (Bio-)Analytical Chemistry.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 633 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, ZY., Yao, QH., Zheng, WH. et al. Highly crosslinking core–shell magnetic nanocomposites based catalyst and heat free polymerization for isolation of glycoprotein. Anal Bioanal Chem 414, 6393–6402 (2022). https://doi.org/10.1007/s00216-022-04202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04202-4

Keywords

Navigation