Skip to main content
Log in

Construction of simple and sensitive pancreatitis related microRNA detection strategy via self-priming triggered cascade signal amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pancreatic diseases, such as pancreatitis and pancreatic cancer, remain the most threatening gastrointestinal diseases with a high mortality due to atypical symptoms. MicroRNA plays crucial roles in regulating metastasis and cell proliferation of pancreatic cancer, constituting important biomarkers for the early diagnosis of pancreatic cancers. Herein, we develop a sensitive and simple exosomal miRNA detection method with only a dual-hairpin-probe. In detail, the dual-hairpin-probe is constructed through combination of two functional sections for both target miRNA identification and signal amplification. With only one probe, the method possesses the capability to avoid interferences from concentration changes of other probes, and exhibits a higher stability which is demonstrated through the obtained low coefficients of variation (CV) of 6.73%. With let-7a as detection target, the LOD of the established method is determined to be 243 aM, while maintaining a high discriminating capability towards let-7a homogenous miRNAs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heckler M, Hackert T, Hu K, Halloran CM, Buchler MW, Neoptolemos JP. Severe acute pancreatitis: surgical indications and treatment. Langenbecks Arch Surg. 2021;406(3):521–35. https://doi.org/10.1007/s00423-020-01944-6.

    Article  PubMed  Google Scholar 

  2. Liu XH, Chen H, Tan RY, Luo C. Acute pancreatitis due to tacrolimus in kidney transplant and review of the literature. J Clin Pharm Ther. 2021;46(1):230–5. https://doi.org/10.1111/jcpt.13269.

    Article  CAS  PubMed  Google Scholar 

  3. Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and prevention of pancreatic cancer. Trends Cancer. 2018;4(6):418–28. https://doi.org/10.1016/j.trecan.2018.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu J, Cai J. Dilemma and challenge of immunotherapy for pancreatic cancer. Dig Dis Sci. 2021;66(2):359–68. https://doi.org/10.1007/s10620-020-06183-9.

    Article  PubMed  Google Scholar 

  5. Zhang L, Sanagapalli S, Stoita A. Challenges in diagnosis of pancreatic cancer. World J Gastroenterol. 2018;24(19):2047–60. https://doi.org/10.3748/wjg.v24.i19.2047.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ariston Gabriel AN, Wang F, Jiao Q, Yvette U, Yang X, Al-Ameri SA, Du L, Wang YS, Wang C. The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Mol Cancer. 2020;19(1):132. https://doi.org/10.1186/s12943-020-01245-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503. https://doi.org/10.1038/nature22341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C, Chu Y, Sun T, Jiang C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials. 2021;268:120546. https://doi.org/10.1016/j.biomaterials.2020.120546.

    Article  CAS  PubMed  Google Scholar 

  9. Lan B, Zeng S, Grutzmann R, Pilarsky C (2019) The role of exosomes in pancreatic cancer. Int J Mol Sci 20(18). https://doi.org/10.3390/ijms20184332.

  10. Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36(13):1770–8. https://doi.org/10.1038/onc.2016.353.

    Article  CAS  PubMed  Google Scholar 

  11. Chen C, Tan R, Wong L, Fekete R, Halsey J. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol. 2011;687:113–34. https://doi.org/10.1007/978-1-60761-944-4_8.

    Article  CAS  PubMed  Google Scholar 

  12. Deng R, Zhang K, Li J. Isothermal amplification for microRNA detection: from the test tube to the cell. Acc Chem Res. 2017;50(4):1059–68. https://doi.org/10.1021/acs.accounts.7b00040.

    Article  CAS  PubMed  Google Scholar 

  13. Xu S, Chang Y, Wu Z, Li Y, Yuan R, Chai Y. One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosens Bioelectron. 2020;149:111848. https://doi.org/10.1016/j.bios.2019.111848.

    Article  CAS  PubMed  Google Scholar 

  14. Wang F, Wang H, Zhang P, Su F, Wang H, Li Z. Ultrasensitive multiplexed detection of miRNA targets of interest based on encoding probe extension in improved cDNA library. Anal Chim Acta. 2021;1152:338281. https://doi.org/10.1016/j.aca.2021.338281.

    Article  CAS  PubMed  Google Scholar 

  15. He C, Wang M, Sun X, Zhu Y, Zhou X, Xiao S, Zhang Q, Liu F, Yu Y, Liang H, Zou G. Integrating PDA microtube waveguide system with heterogeneous CHA amplification strategy towards superior sensitive detection of miRNA. Biosens Bioelectron. 2019;129:50–7. https://doi.org/10.1016/j.bios.2019.01.003.

    Article  CAS  PubMed  Google Scholar 

  16. Masud MK, Umer M, Hossain MSA, Yamauchi Y, Nguyen NT, Shiddiky MJA. Nanoarchitecture frameworks for electrochemical miRNA detection. Trends Biochem Sci. 2019;44(5):433–52. https://doi.org/10.1016/j.tibs.2018.11.012.

    Article  CAS  PubMed  Google Scholar 

  17. Koo KM, Carrascosa LG, Shiddiky MJ, Trau M. Poly(A) Extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal Chem. 2016;88(4):2000–5. https://doi.org/10.1021/acs.analchem.5b04795.

    Article  CAS  PubMed  Google Scholar 

  18. Wang R, Zhao X, Chen X, Qiu X, Qing G, Zhang H, Zhang L, Hu X, He Z, Zhong D, Wang Y, Luo Y. Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle microRNAs. Anal Chem. 2020;92(2):2176–85. https://doi.org/10.1021/acs.analchem.9b04814.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang G, Zhang L, Tong J, Zhao X, Ren J. CRISPR-Cas12a enhanced rolling circle amplification method for ultrasensitive miRNA detection. Microchemical Journal. 2020;158(2020):105239. https://doi.org/10.1016/j.microc.2020.105239.

    Article  CAS  Google Scholar 

  20. Li J, Liu J, Bi Y, Sun M, Bai J, Zhou M. Ultrasensitive electrochemiluminescence biosensing platform for miRNA-21 and MUC1 detection based on dual catalytic hairpin assembly. Anal Chim Acta. 2020;1105:87–94. https://doi.org/10.1016/j.aca.2020.01.034.

    Article  CAS  PubMed  Google Scholar 

  21. Gu J, Qiao Z, He X, Yu Y, Lei Y, Tang J, Shi H, He D, Wang K. Enzyme-free amplified detection of miRNA based on target-catalyzed hairpin assembly and DNA-stabilized fluorescent silver nanoclusters. Analyst. 2020;145(15):5194–9. https://doi.org/10.1039/d0an00545b.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Zhang Q, Weng X, Du Y, Zhou X. NEase-based amplification for detection of miRNA, multiple miRNAs and circRNA. Anal Chim Acta. 2021;1145:52–8. https://doi.org/10.1016/j.aca.2020.12.024.

    Article  CAS  PubMed  Google Scholar 

  23. Lu W, Wang Y, Song S, Chen C, Yao B, Wang M. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction. Analyst. 2018;143(20):5046–53. https://doi.org/10.1039/c8an01544a.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Wang H, Wang H, Wang F, Li Z. CRISPR/Cas12a-assisted ligation-initiated loop-mediated isothermal amplification (CAL-LAMP) for highly specific detection of microRNAs. Anal Chem. 2021;93(22):7942–8. https://doi.org/10.1021/acs.analchem.1c00686.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao X, Zhang L, Gao W, Yu X, Gu W, Fu W, Luo Y. Spatiotemporally controllable microRNA imaging in living cells via a near-infrared light-activated nanoprobe. ACS Appl Mater Interfaces. 2020;12(32):35958–66. https://doi.org/10.1021/acsami.0c10962.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Li S, Zhang L, Zhao Q, Li N, Wu Y. Catalytic hairpin assembly-assisted rolling circle amplification for high-sensitive telomerase activity detection. ACS Omega. 2020;5(20):11836–41. https://doi.org/10.1021/acsomega.0c01459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao X, Yuan Y, Liu X, Mao F, Xu G, Liu Q. A versatile platform for sensitive and label-free identification of biomarkers through an exo-III-assisted cascade signal amplification strategy. Anal Chem. 2022;94(4):2298–304. https://doi.org/10.1021/acs.analchem.1c05012.

    Article  CAS  PubMed  Google Scholar 

  28. Song J, Lee CY, Park HG. Ultrasensitive multiplexed miRNA detection based on a self-priming hairpin-triggered isothermal cascade reaction. Chem Commun (Camb). 2022;58(14):2279–82. https://doi.org/10.1039/d1cc06282d.

    Article  CAS  Google Scholar 

  29. Wang J, Sun Y, Lau C, Lu J. Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection. Anal Bioanal Chem. 2020;412(13):3019–27. https://doi.org/10.1007/s00216-020-02531-w.

    Article  CAS  PubMed  Google Scholar 

  30. Povedano E, Ruiz-Valdepenas Montiel V, Gamella M, Serafin V, Pedrero M, Moranova L, Bartosik M, Montoya JJ, Yanez-Sedeno P, Campuzano S, Pingarron JM. A novel zinc finger protein-based amperometric biosensor for miRNA determination. Anal Bioanal Chem. 2020;412(21):5031–41. https://doi.org/10.1007/s00216-019-02219-w.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project is funded by the Natural Science Foundation of Chongqing Science and Technology Commission (cstc2021jcyj-msxm2671 and cstc2018jcyjAX0758); the Natural Science Foundation of Chongqing Medical and Pharmaceutical College (ygz2019302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linhong Ning, Yuan Zhou or Yang Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 271 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Cheng, H., Yu, F. et al. Construction of simple and sensitive pancreatitis related microRNA detection strategy via self-priming triggered cascade signal amplification. Anal Bioanal Chem 414, 5837–5844 (2022). https://doi.org/10.1007/s00216-022-04147-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04147-8

Keywords

Navigation