Skip to main content
Log in

Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic paper-based analytical devices (μPADs) have been widely used in point-of-care testing owing to their simple operation, low volume of the sample required, and the lack of the need for an external force. To obtain accurate semi-quantitative or quantitative results, μPADs need to respond to the challenges posed by differences in reaction conditions. In this paper, multi-layer μPADs are fabricated by the imprinting method for the colorimetric detection of C-reactive protein (CRP). Different lighting conditions and shooting angles of scenes are simulated in image acquisition, and the detection-related performance of μPADs is improved by using a machine learning algorithm. The You Only Look Once (YOLO) model is used to identify the areas of reaction in μPADs. This model can observe an image only once to predict the objects present in it and their locations. The YOLO model trained in this study was able to identify all the reaction areas quickly without incurring any error. These reaction areas were categorized by classification algorithms to determine the risk level of CRP concentration. Multi-layer perceptron, convolutional neural network, and residual network algorithms were used for the classification tasks, where the latter yielded the highest accuracy of 96%. It has a promising application prospect in fast recognition and analysis of μPADs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang JC, Wang K, Xu H, Yan WQ, Jin QH, Cui DX. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: a review. Talanta. 2019;202:96–110. https://doi.org/10.1016/j.talanta.2019.04.054.

    Article  CAS  PubMed  Google Scholar 

  2. Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 2021;13(1):51. https://doi.org/10.1007/s40820-021-00717-0.

    Article  CAS  Google Scholar 

  3. Cheng YM, Wang K, Xu H, Li TA, Jin QH, Cui DX. Recent developments in sensors for wearable device applications. Anal Bioanal Chem. 2021;413(24):6037–57. https://doi.org/10.1007/s00216-021-03602-2.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng W, Wang K, Xu H, Zheng CJ, Cao B, Qin Q, et al. Strategies for the detection of target analytes using microfluidic paper-based analytical devices. Anal Bioanal Chem. 2021;413(9):2429–45. https://doi.org/10.1007/s00216-021-03213-x.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem-Int Edit. 2007;46(8):1318–20. https://doi.org/10.1002/anie.200603817.

    Article  CAS  Google Scholar 

  6. Trofimchuk E, Hu YX, Nilghaz A, Hua MZ, Sun SLN, Lu XN. Development of paper-based microfluidic device for the determination of nitrite in meat. Food Chem. 2020;316:6. https://doi.org/10.1016/j.foodchem.2020.126396.

    Article  CAS  Google Scholar 

  7. Fakhri N, Hosseini M, Tavakoli O. Aptamer-based colorimetric determination of Pb2+ using a paper-based microfluidic platform. Anal Methods. 2018;10(36):4438–44. https://doi.org/10.1039/c8ay01331d.

    Article  CAS  Google Scholar 

  8. Liu CY, Miao YQ, Zhan XJ, Zhang SL, Zhao XJ. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles. Microchim Acta. 2020;187(6):8. https://doi.org/10.1007/s00604-020-04333-4.

    Article  CAS  Google Scholar 

  9. Wang K, Yang JC, Xu H, Cao B, Qin Q, Liao XM, et al. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal Bioanal Chem. 2020;412(11):2517–28. https://doi.org/10.1007/s00216-020-02475-1.

    Article  CAS  PubMed  Google Scholar 

  10. Shibata H, Hiruta Y, Citterio D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst. 2019;144(4):1178–86. https://doi.org/10.1039/c8an02146e.

    Article  CAS  PubMed  Google Scholar 

  11. Adkins J, Boehle K, Henry C. Electrochemical paper-based microfluidic devices. Electrophoresis. 2015;36(16):1811–24. https://doi.org/10.1002/elps.201500084.

    Article  CAS  PubMed  Google Scholar 

  12. Ming T, Wang Y, Luo JP, Liu JT, Sun S, Xing Y, et al. Folding paper-based aptasensor platform coated with novel nanoassemblies for instant and highly sensitive detection of 17 beta-estradiol. ACS Sens. 2019;4(12):3186-+. https://doi.org/10.1021/acssensors.9b01633.

  13. Wang Y, Luo JP, Liu JT, Sun S, Xiong Y, Ma YY, et al. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2019;136:84–90. https://doi.org/10.1016/j.bios.2019.04.032.

    Article  CAS  PubMed  Google Scholar 

  14. Cao QP, Liang B, Tu TT, Wei JW, Fang L, Ye XS. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019;9(10):5674–81. https://doi.org/10.1039/c8ra09157a.

    Article  CAS  Google Scholar 

  15. Alahmad W, Uraisin K, Nacapricha D, Kaneta T. A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium(III). Anal Methods. 2016;8(27):5414–20. https://doi.org/10.1039/c6ay00954a.

    Article  CAS  Google Scholar 

  16. Hassanzadeh J, Al Lawati HAJ, Al LI. Metal-organic framework loaded by rhodamine B as a novel chemiluminescence system for the paper-based analytical devices and its application for total phenolic content determination in food samples. Anal Chem. 2019;91(16):10631–9. https://doi.org/10.1021/acs.analchem.9b01862.

    Article  CAS  PubMed  Google Scholar 

  17. Liu FF, Zhang CS. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens Actuator B-Chem. 2015;209:399–406. https://doi.org/10.1016/j.snb.2014.11.099.

    Article  CAS  Google Scholar 

  18. Chen Y, Chu WR, Liu W, Guo XY, Jin Y, Li BX. Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Microchim Acta. 2018;185(3):7. https://doi.org/10.1007/s00604-018-2726-5.

    Article  CAS  Google Scholar 

  19. Sun XE, Li BW, Tian CY, Yu FB, Zhou N, Zhan YH, et al. Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal Chim Acta. 2018;1007:33–9. https://doi.org/10.1016/j.aca.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Zhang Y, Liu F, Su M, Liang LL, Ge SG, et al. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode. Chem Commun. 2015;51(74):14030–3. https://doi.org/10.1039/c5cc05710h.

    Article  CAS  Google Scholar 

  21. Wu LD, Ma C, Zheng XX, Liu HY, Yu JH. Paper-based electrochemiluminescence origami device for protein detection using assembled cascade DNA-carbon dots nanotags based on rolling circle amplification. Biosens Bioelectron. 2015;68:413–20. https://doi.org/10.1016/j.bios.2015.01.034.

    Article  CAS  PubMed  Google Scholar 

  22. Gao CM, Yu HH, Wang YH, Liu DZ, Wen T, Zhang LN, et al. Paper-based constant potential electrochemiluminescence sensing platform with black phosphorus as a luminophore enabled by a perovskite solar cell. Anal Chem. 2020;92(10):6822–6. https://doi.org/10.1021/acs.analchem.0c01033.

    Article  CAS  PubMed  Google Scholar 

  23. Baynes C, Yoon JY. mu PAD fluorescence scattering immunoagglutination assay for cancer biomarkers from blood and serum. SLAS Technol. 2018;23(1):30–43. https://doi.org/10.1177/2472630317731891.

    Article  CAS  PubMed  Google Scholar 

  24. Chen XC, Yu SM, Yang L, Wang JP, Jiang CL. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor. Nanoscale. 2016;8(28):13669–77. https://doi.org/10.1039/c6nr02878k.

    Article  CAS  PubMed  Google Scholar 

  25. Kim Y, Jang G, Lee TS. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl Mater Interfaces. 2015;7(28):15649–57. https://doi.org/10.1021/acsami.5b04724.

    Article  CAS  PubMed  Google Scholar 

  26. Liang LL, Su M, Li L, Lan FF, Yang GX, Ge SG, et al. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens Actuator B-Chem. 2016;229:347–54. https://doi.org/10.1016/j.snb.2016.01.137.

    Article  CAS  Google Scholar 

  27. Qin Q, Wang K, Xu H, Cao B, Zheng W, Jin QH, et al. Deep learning on chromatographic data for segmentation and sensitive analysis. J Chromatogr A. 2020;1634:11. https://doi.org/10.1016/j.chroma.2020.461680.

    Article  CAS  Google Scholar 

  28. Mercan OB, Kilic V, Sen M. Machine learning-based colorimetric determination of glucose in artificial saliva with different reagents using a smartphone coupled mu PAD. Sens Actuator B-Chem. 2021;329:8. https://doi.org/10.1016/j.snb.2020.129037.

    Article  CAS  Google Scholar 

  29. Lee W, Gonzalez A, Arguelles P, Guevara R, Gonzalez-Guerrero MJ, Gomez FA. Thread/paper- and paper-based microfluidic devices for glucose assays employing artificial neural networks. Electrophoresis. 2018;39(12):1443–51. https://doi.org/10.1002/elps.201800059.

    Article  CAS  PubMed  Google Scholar 

  30. Ballard ZS, Joung H-A, Goncharov A, Liang J, Nugroho K, Di Carlo D, et al. Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. NPJ Dig Med. 2020;3(1):66. https://doi.org/10.1038/s41746-020-0274-y.

    Article  Google Scholar 

  31. Zeng NY, Li H, Wang ZD, Liu WB, Liu SM, Alsaadi FE, et al. Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip *. Neurocomputing. 2021;425:173–80. https://doi.org/10.1016/j.neucom.2020.04.001.

    Article  Google Scholar 

  32. Qin Q, Wang K, Yang JC, Xu H, Cao B, Wo Y, et al. Algorithms for immunochromatographic assay: review and impact on future application. Analyst. 2019;144(19):5659–76. https://doi.org/10.1039/c9an00964g.

    Article  CAS  PubMed  Google Scholar 

  33. Redmon J, Divvala S, Girshick R, Farhadi A, Ieee, editors. You Only Look Once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27–30; Seattle, WA. NEW YORK: IEEE; 2016. https://doi.org/10.1109/cvpr.2016.91.

  34. Redmon J, Farhadi A. YOLO9000: better, faster, stronger arXiv. arXiv (USA). 2016:9.

  35. Girshick R, Donahue J, Darrell T, Malik J, Ieee, editors. Rich feature hierarchies for accurate object detection and semantic segmentation. 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014 Jun 23–28; Columbus, OH. NEW YORK: IEEE; 2014. https://doi.org/10.1109/cvpr.2014.81.

  36. He KM, Zhang XY, Ren SQ, Sun J, editors. Spatial pyramid pooling in deep convolutional networks for visual recognition. 13th European Conference on Computer Vision (ECCV); 2014 Sep 06–12; Zurich, SWITZERLAND. CHAM: Springer International Publishing Ag; 2014. https://doi.org/10.1007/978-3-319-10578-9_23.

  37. Girshick R. Fast R-CNN. IEEE International Conference on Computer Vision; 2015 Dec 11–18; Santiago, CHILE. NEW YORK: IEEE;2015. https://doi.org/10.1109/iccv.2015.169.

  38. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):640–51. https://doi.org/10.1109/tpami.2016.2572683.

    Article  PubMed  Google Scholar 

  39. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation arXiv. arXiv (USA). 2015:8.

  40. Huang CX, Lan YS, Xu GW, Zhai XJ, Wu JP, Lin F, et al. A deep segmentation network of multi-scale feature fusion based on attention mechanism for IVOCT lumen contour. IEEE-ACM Trans Comput Biol Bioinform. 2021;18(1):62–9. https://doi.org/10.1109/tcbb.2020.2973971.

    Article  Google Scholar 

  41. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM (USA). 2017;60(6):84–90. https://doi.org/10.1145/3065386.

    Article  Google Scholar 

  42. Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 07–12; Boston, MA. NEW YORK: IEEE; 2015. https://doi.org/10.1109/cvpr.2015.7298594.

  43. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18–23; Salt Lake City, UT. NEW YORK: IEEE; 2018. https://doi.org/10.1109/cvpr.2018.00745.

  44. Lloyd-Jones DM, Wilson PWF, Larson MG, Beiser A, Leip EP, D’Agostino RB, et al. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol. 2004;94(1):20–4. https://doi.org/10.1016/j.amjcard.2004.03.023.

    Article  PubMed  Google Scholar 

  45. Koenig W, Sund M, Frohlich M, Fischer HG, Lowel H, Doring A, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men - results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99(2):237–42. https://doi.org/10.1161/01.Cir.99.2.237.

    Article  CAS  PubMed  Google Scholar 

  46. Shrivastava AK, Singh HV, Raizada A, Singh SK. C-reactive protein, inflammation and coronary heart disease. Egypt Heart J. 2015;67(2):89–97.

    Article  Google Scholar 

  47. Adukauskiene D, Ciginskiene A, Adukauskaite A, Pentiokiniene D, Slapikas R, Ceponiene I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Med Lith. 2016;52(1):1–10. https://doi.org/10.1016/j.medici.2015.12.001.

    Article  Google Scholar 

  48. Redmon J, Farhadi A. Yolov3: an incremental improvement. arXiv preprint arXiv:180402767. 2018.

  49. Kaiming H, Xiangyu Z, Shaoqing R, Jian S. Deep residual learning for image recognition. IEEE Conf Comput Vis Pattern Recogn (CVPR). 2016;2016:770–8. https://doi.org/10.1109/cvpr.2016.90.

    Article  Google Scholar 

  50. Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5. https://doi.org/10.1021/ac901071p.

    Article  CAS  PubMed  Google Scholar 

  51. Xia YY, Si J, Li ZY. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89. https://doi.org/10.1016/j.bios.2015.10.032.

    Article  CAS  PubMed  Google Scholar 

  52. Ding Z, Chen N, Qiu Y, Wu X. Preparation of paper-based microfluidic chips processed by imprinted method and their application. J Instrum Anal. 2019;38(12):1507–10.

    Google Scholar 

  53. Redmon J. Darknet: Open source neural networks in c. 2013. http://pjreddie.com/darknet/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Q., Zheng, W., Xu, H. et al. Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning. Anal Bioanal Chem 414, 3959–3970 (2022). https://doi.org/10.1007/s00216-022-04039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04039-x

Keywords

Navigation