Skip to main content
Log in

A low-cost self-dispersing method of droplet array generation enabled by a simple reusable mask for bioanalysis and bioassays

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Discontinuous dewetting is an attractive technique that can produce droplet array of specific volume, geometry and at predefined location on a substrate. Droplet array has great potential in bioanalysis such as high-throughput live cell screening, digital PCR, and drug candidates. Here, we propose a self-dispersing droplet array generation method, which has advantages of low cost, simple operation, and easy large-area production ability. Droplet array of specific volumes was generated on a polymethyl methacrylate (PMMA) substrate using a simple reusable polyimide (PI) adhesive mask. Experiment shows that the generated droplet array can be used to successfully capture single particles which obeys Poisson distribution in a high-throughput manner. Furthermore, a droplet-array sandwiching chip was created based on the self-dispersion method for rapid detection of human serum albumin (HSA) at wide range of 183–11,712 μg/mL with low reagent consumption of 2.2 μL, demonstrating its potential applications in convenient high-throughput bioanalysis and bioassays.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Fan JZ, Villarreal F, Weyers B, Ding YF, Tseng KH, Li JN, Li BQ, Tan CM, Pan TR. Multi-dimensional studies of synthetic genetic promoters enabled by microfluidic impact printing. Lab Chip. 2017;17(13):2198–207. https://doi.org/10.1039/c7lc00382j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim SH, Iino R, Iwai S, Araki S, Sakakihara S, Noji H. Large-scale femtoliter droplet array for digital counting of single biomolecules (vol 12, pg 4986, 2012). Lab Chip. 2012;12(24):5284–5284.

    Article  Google Scholar 

  3. Li X, Hu J, Easley CJ. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Lab Chip. 2018;18(19):2926–35. https://doi.org/10.1039/c8lc00616d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hong JW, Quake SR. Integrated nanoliter systems. Nat Biotechnol. 2003;21(10):1179–83. https://doi.org/10.1038/nbt871.

    Article  CAS  PubMed  Google Scholar 

  5. Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002;298(5593):580–4. https://doi.org/10.1126/science.1076996.

    Article  CAS  PubMed  Google Scholar 

  6. Plog J, Lowe JM, Jiang Y, Pan Y, Yarin AL. Control of direct written ink droplets using electrowetting. Langmuir. 2019;35(34):11023–36. https://doi.org/10.1021/acs.langmuir.9b01061.

    Article  CAS  PubMed  Google Scholar 

  7. Ruvalcaba-Cardenas AD, Thurgood P, Chen S, Khoshmanesh K, Tovar-Lopez FJ. Droplet on soft shuttle: electrowetting-on-dielectric actuation of small droplets. ACS Appl Mater Interfaces. 2019;11(42):39283–91. https://doi.org/10.1021/acsami.9b10796.

    Article  CAS  PubMed  Google Scholar 

  8. Ueda E, Geyer FL, Nedashkivska V, Levkin PA. Droplet microarray: facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications. Lab Chip. 2012;12(24):5218–24. https://doi.org/10.1039/c2lc40921f.

    Article  CAS  PubMed  Google Scholar 

  9. Ueda E, Levkin PA. Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater. 2013;25(9):1234–47. https://doi.org/10.1002/adma.201204120.

    Article  CAS  PubMed  Google Scholar 

  10. Sakakihara S, Araki S, Iino R, Noji H. A single-molecule enzymatic assay in a directly accessible femtoliter droplet array. Lab Chip. 2010;10(24):3355–62. https://doi.org/10.1039/c0lc00062k.

    Article  CAS  PubMed  Google Scholar 

  11. Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A. Patterned superomniphobic-superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem Int Edit. 2012;51(40):10109–13. https://doi.org/10.1002/anie.201202823.

    Article  CAS  Google Scholar 

  12. Feng WQ, Li LX, Du X, Welle A, Levkin PA. Single-step fabrication of high-density microdroplet arrays of low-surface-tension liquids. Adv Mater. 2016;28(16):3202–8. https://doi.org/10.1002/adma.201505972.

    Article  CAS  PubMed  Google Scholar 

  13. Biebuyck HA, Whitesides GM. Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold. Langmuir. 1994;10(8):2790–3. https://doi.org/10.1021/la00020a047.

    Article  CAS  Google Scholar 

  14. Feng WQ, Li LX, Yang CW, Welle A, Trapp O, Levkin PA. UV-induced tetrazole-thiol reaction for polymer conjugation and surface functionalization. Angew Chem Int Edit. 2015;54(30):8732–5. https://doi.org/10.1002/anie.201502954.

    Article  CAS  Google Scholar 

  15. Ishizaki T, Saito N, Takai O. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry. Langmuir. 2010;26(11):8147–54. https://doi.org/10.1021/la904447c.

    Article  CAS  PubMed  Google Scholar 

  16. Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA. Superhydrophobic-superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays. Angew Chem Int Edit. 2011;50(36):8424–7. https://doi.org/10.1002/anie.201102545.

    Article  CAS  Google Scholar 

  17. Li JS, Li LX, Du X, Feng WQ, Welle A, Trapp O, Grunze M, Hirtz M, Levkin PA. Reactive superhydrophobic surface and its photoinduced disulfideene and thiol-ene (bio)functionalization. Nano Lett. 2015;15(1):675–81. https://doi.org/10.1021/nl5041836.

    Article  CAS  PubMed  Google Scholar 

  18. Popova AA, Schillo SM, Demir K, Ueda E, Nesterov-Mueller A, Levkin PA. Droplet-array (DA) sandwich chip: a versatile platform for high-throughput cell screening based on superhydrophobic-superhydrophilic micropatterning. Adv Mater. 2015;27(35):5217–22. https://doi.org/10.1002/adma.201502115.

    Article  CAS  PubMed  Google Scholar 

  19. Ueda E, Feng WQ, Levkin PA. Superhydrophilic-superhydrophobic patterned surfaces as high-density cell microarrays: optimization of reverse transfection. Adv Healthc Mater. 2016;5(20):2646–54. https://doi.org/10.1002/adhm.201600518.

    Article  CAS  PubMed  Google Scholar 

  20. Xia Y, Chen H, Li J, Hu H, Qian Q, He RX, Ding Z, Guo SS. Acoustic droplet-assisted superhydrophilic-superhydrophobic microarray platform for high-throughput screening of patient-derived tumor spheroids. ACS Appl Mater Interfaces. 2021;13(20):23489–501. https://doi.org/10.1021/acsami.1c06655.

    Article  CAS  PubMed  Google Scholar 

  21. Baghdoyan S, Roupioz Y, Pitaval A, Castel D, Khomyakova E, Papine A, Soussaline F, Gidrol X. Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res. 2004;32(9):e77. https://doi.org/10.1093/nar/gnh074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R. Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc. 2007;2(2):392–9. https://doi.org/10.1038/nprot.2006.483.

    Article  CAS  PubMed  Google Scholar 

  23. Rantala JK, Makela R, Aaltola AR, Laasola P, Mpindi JP, Nees M, Saviranta P, Kallioniemi O. A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics. 2011;12:162. https://doi.org/10.1186/1471-2164-12-162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roguev A, Talbot D, Negri GL, Shales M, Cagney G, Bandyopadhyay S, Panning B, Krogan NJ. Quantitative genetic-interaction mapping in mammalian cells. Nat Methods. 2013;10(5):432–7. https://doi.org/10.1038/nmeth.2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lei WX, Demir K, Overhage J, Grunze M, Schwartz T, Levkin PA. Droplet-microarray: miniaturized platform for high-throughput screening of antimicrobial compounds. Adv Biosyst. 2020; ARTN 2000073.https://doi.org/10.1002/adbi.202000073

  26. Feng WQ, Ueda E, Levkin PA. Droplet microarrays: from surface patterning to high-throughput applications. Adv Mater. 2018;30(20):1706111. https://doi.org/10.1002/adma.201706111.

    Article  CAS  Google Scholar 

  27. Wang JX, Zhang YZ, Wang ST, Song YL, Jiang L. Bioinspired colloidal photonic crystals with controllable wettability. Accounts Chem Res. 2011;44(6):405–15. https://doi.org/10.1021/ar1001236.

    Article  CAS  Google Scholar 

  28. Wu L, Dong ZC, Kuang MX, Li YA, Li FY, Jiang L, Song YL. Printing patterned fine 3D structures by manipulating the three phase contact line. Adv Funct Mater. 2015;25(15):2237–42. https://doi.org/10.1002/adfm.201404559.

    Article  CAS  Google Scholar 

  29. Tian W, Zhou HP, Li L. Hybrid organic-inorganic perovskite photodetectors. Small. 2017;13(41):1702107. https://doi.org/10.1002/smll.201702107.

    Article  CAS  Google Scholar 

  30. Arrabito G, Pignataro B. Solution processed micro- and nano-bioarrays for multiplexed biosensing. Anal Chem. 2012;84(13):5450–62. https://doi.org/10.1021/ac300621z.

    Article  CAS  PubMed  Google Scholar 

  31. Burchak ON, Mugherli L, Ostuni M, Lacapere JJ, Balakirev MY. Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. J Am Chem Soc. 2011;133(26):10058–61. https://doi.org/10.1021/ja204016e.

    Article  CAS  PubMed  Google Scholar 

  32. Gharibi M, Haroun S, Choy JC, Li PCH. A microfluidic antibody bioarray for fast detection of human interleukins in low sample volumes. Can J Chem. 2019;97(10):737–44. https://doi.org/10.1139/cjc-2018-0506.

    Article  CAS  Google Scholar 

  33. Zhang Y, Minagawa Y, Kizoe H, Miyazaki K, Iino R, Ueno H, Tabata KV, Shimane Y, Noji H. Accurate high-throughput screening based on digital protein synthesis in a massively parallel femtoliter droplet array. Sci Adv. 2019;5(8):8185. https://doi.org/10.1126/sciadv.aav8185.

    Article  CAS  Google Scholar 

  34. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999;20(23–24):2363–76. https://doi.org/10.1016/S0142-9612(99)00165-9.

    Article  CAS  PubMed  Google Scholar 

  35. Li HZ, Yang Q, Li GN, Li MZ, Wang ST, Song YL. Splitting a droplet for femtoliter liquid patterns and single cell isolation. Acs Appl Mater Inter. 2015;7(17):9060–5. https://doi.org/10.1021/am509177s.

    Article  CAS  Google Scholar 

  36. Xu KR, Wang XP, Ford RM, Landers JP. Self-partitioned droplet array on laser-patterned superhydrophilic glass surface for wall-less cell arrays. Anal Chem. 2016;88(5):2652–8. https://doi.org/10.1021/acs.analchem.5b03764.

    Article  CAS  PubMed  Google Scholar 

  37. Wu H, Chen X, Gao X, Zhang M, Wu J, Wen W. High-throughput generation of durable droplet arrays for single-cell encapsulation, culture, and monitoring. Anal Chem. 2018;90(7):4303–9. https://doi.org/10.1021/acs.analchem.8b00048.

    Article  CAS  PubMed  Google Scholar 

  38. Tessari P. Protein metabolism in liver cirrhosis: from albumin to muscle myofibrils. Curr Opin Clin Nutr Metab Care. 2003;6(1):79–85. https://doi.org/10.1097/00075197-200301000-00012.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Huang Y, Zhao S, Shao T, Cheng Y. Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chem Commun (Camb). 2013;49(22):2234–6. https://doi.org/10.1039/c3cc38397k.

    Article  CAS  Google Scholar 

  40. Leblanc Y, Bihoreau N, Chevreux G. Characterization of human serum albumin isoforms by ion exchange chromatography coupled on-line to native mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1095:87–93. https://doi.org/10.1016/j.jchromb.2018.07.014.

    Article  CAS  PubMed  Google Scholar 

  41. Mao Y, Pan Y, Li X, Li B, Chu J, Pan T. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip. 2018;18(18):2720–9. https://doi.org/10.1039/c8lc00505b.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the USTC Experimental Center of Engineering and Material Sciences and the USTC center for Micro-and Nanoscale Research and Fabrication for technical support in microfabrication.

Funding

This research work has been supported in part by the Strategic Priority Research Program (C) of the CAS (No. XDC07040200), Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao (No. 51929501), the Fundamental Research Funds for the Central Universities (No. WK5290000001), and National Natural Science Foundation of China (No. 51675505).

Author information

Authors and Affiliations

Authors

Contributions

Kai Liu and Yang Pan designed the research and wrote the manuscript. Xiaojie Wang and Tuo Ma provided help for the establishment of the microfluidic nanoliter dispenser. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Baoqing Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All listed co-authors and institutions agreed with the submission of this paper.

Conflict of interest

The authors declare no competing interests.

Statement on animal welfare

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9782 KB)

Supplementary file2 (WMV 13608 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Pan, Y., Wang, X. et al. A low-cost self-dispersing method of droplet array generation enabled by a simple reusable mask for bioanalysis and bioassays. Anal Bioanal Chem 414, 1141–1149 (2022). https://doi.org/10.1007/s00216-021-03739-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03739-0

Keywords

Navigation