Skip to main content
Log in

Proximity ligation assay mediated rolling circle amplification strategy for in situ amplified imaging of glycosylated PD-L1

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycosylated PD-L1 is a more reliable biomarker for immune checkpoint therapy and plays important roles in tumor immunity. Glycosylation of PD-L1 hinders antibody-based detection, which is partially responsible for the inconsistency between PD-L1 immunohistochemical results and therapeutic treatment response. Herein, we present a proximity ligation assay mediated rolling circle amplification (PLA-RCA) strategy for amplified imaging of glycosylated PD-L1 in situ. The strategy relies on a pair of DNA probes: an aptamer probe to specifically recognize cellular surface protein PD-L1 and a glycan conversion (GC) probe for metabolic glycan labeling. Upon proximity ligation of sequence binding to the two probes, the proximity ligation–triggered RCA occurs. The feasibility of the as-proposed strategy has been validated as it realized the visualization of PD-L1 glycosylation in different cancer cells and the monitoring of the variation of PD-L1 glycosylation during drug treatment. Thus, we envision the present work offers a useful alternative to track protein-specific glycosylation and potentially advances the investigation of the dynamic glycan state associated with the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia. 2018;20(8):813–25.

    Article  CAS  Google Scholar 

  2. Chang MM, Gaidukov L, Jung G, Tseng WA, Scarcelli JJ, Cornell R, et al. Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat Chem Biol. 2019;15(7):730–6.

    Article  CAS  Google Scholar 

  3. He CH, Lee CG, Ma B, Kamle S, Choi AM, Elias JA. N-glycosylation regulates chitinase 3–like-1 and IL-13 ligand binding to IL-13 receptor α2. Am J Respir Cell Mol Biol. 2020;63(3):386–95.

    Article  CAS  Google Scholar 

  4. Liu K, Tan S, Jin W, Guan J, Wang Q, Sun H, et al. N-glycosylation of PD-1 promotes binding of camrelizumab. EMBO Rep. 2020;21(12):e51444.

    Article  CAS  Google Scholar 

  5. Hsu J-M, Li C-W, Lai Y-J, Hung M-C. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res. 2018;78(22):6349–53.

    Article  CAS  Google Scholar 

  6. Shao B, Li C-W, Lim S-O, Sun L, Lai Y-J, Hou J, et al. Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. Am J Cancer Res. 2018;8(9):1837.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Strauch V, Saul D, Berisha M, Mackensen A, Mougiakakos D, Jitschin R. N-glycosylation controls inflammatory licensing-triggered PD-L1 upregulation in human mesenchymal stromal cells. Stem Cells. 2020;38(8):986–93.

    Article  CAS  Google Scholar 

  8. Wang Y-N, Lee H-H, Hsu JL, Yu D, Hung M-C. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci. 2020;27(1):1–11.

    Article  Google Scholar 

  9. Lee H-H, Wang Y-N, Xia W, Chen C-H, Rau K-M, Ye L, et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell. 2019;36(2):168–78. e4.

    Article  CAS  Google Scholar 

  10. Lim H, Chun J, Jin X, Kim J, Yoon J, No KT. Investigation of protein-protein interactions and hot spot region between PD-1 and PD-L1 by fragment molecular orbital method. Sci Rep. 2019;9(1):1–11.

    Google Scholar 

  11. Sidaway P. Deglycosylated PD-L1 might be a better biomarker. Nature Reviews Clinical Oncology. 2019;16(10):592.

    Article  Google Scholar 

  12. Xu J, Yang X, Mao Y, Mei J, Wang H, Ding J, et al. Removal of N-linked glycosylation enhances PD-L1 detection in colon cancer: validation research based on immunohistochemistry analysis. Technol Cancer Res Treat. 2021;20:15330338211019442.

    PubMed  PubMed Central  Google Scholar 

  13. Li N, Zhang W, Lin L, Shah SNA, Li Y, Lin J-M. Nongenetically encoded and erasable imaging strategy for receptor-specific glycans on live cells. Anal Chem. 2019;91(4):2600–4.

    Article  CAS  Google Scholar 

  14. Chen Y, Ding L, Song W, Yang M, Ju H. Protein-specific Raman imaging of glycosylation on single cells with zone-controllable SERS effect. Chem Sci. 2016;7(1):569–74.

    Article  CAS  Google Scholar 

  15. Zhao T, Masuda T, Miyoshi E, Takai M. High dye-loaded and thin-shell fluorescent polymeric nanoparticles for enhanced FRET imaging of protein-specific sialylation on the cell surface. Anal Chem. 2020;92(19):13271–80.

    Article  CAS  Google Scholar 

  16. Li Z, Yuan B, Lin X, Meng X, Wen X, Guo Q, et al. Intramolecular trigger remodeling-induced HCR for amplified detection of protein-specific glycosylation. Talanta. 2020;215:120889.

    Article  CAS  Google Scholar 

  17. Yang X, Tang Y, Zhang X, Hu Y, Tang YY, Hu LY, et al. Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots. Microchim Acta. 2019;186(11):1–9.

    Google Scholar 

  18. Li J, Liu S, Sun L, Li W, Zhang S-Y, Yang S, et al. Amplified visualization of protein-specific glycosylation in zebrafish via proximity-induced hybridization chain reaction. J Am Chem Soc. 2018;140(48):16589–95.

    Article  CAS  Google Scholar 

  19. Feng C, Mao X, Yang Y, Zhu X, Yin Y, Li G. Rolling circle amplification in electrochemical biosensor with biomedical applications. J Electroanal Chem. 2016;781:223–32.

    Article  CAS  Google Scholar 

  20. Gao F, Zhou F, Chen S, Yao Y, Wu J, Yin D, et al. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst. 2017;142(22):4308–16.

    Article  CAS  Google Scholar 

  21. Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, et al. Highly sensitive microRNA detection by coupling nicking-enhanced rolling circle amplification with MoS2 quantum dots. Anal Chem. 2020;92(19):13588–94.

    Article  CAS  Google Scholar 

  22. Hamidi SV, Perreault J. Simple rolling circle amplification colorimetric assay based on pH for target DNA detection. Talanta. 2019;201:419–25.

    Article  CAS  Google Scholar 

  23. Jiang H-X, Zhao M-Y, Niu C-D, Kong D-M. Real-time monitoring of rolling circle amplification using aggregation-induced emission: applications in biological detection. Chem Commun. 2015;51(92):16518–21.

    Article  CAS  Google Scholar 

  24. Joffroy B, Uca YO, Prešern D, Doye JPK, Schmidt TL. Rolling circle amplification shows a sinusoidal template length-dependent amplification bias. Nucleic Acids Res. 2018;46(2):538–45.

    Article  CAS  Google Scholar 

  25. Shen C, Liu S, Li X, Yang M. Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal Chem. 2019;91(18):11614–9.

    Article  CAS  Google Scholar 

  26. Xu J, Guo J, Maina SW, Yang Y, Hu Y, Li X, et al. An aptasensor for Staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification. Anal Biochem. 2018;549:136–42.

    Article  CAS  Google Scholar 

  27. Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-a review. Anal Chim Acta. 2020.

  28. Zhang J, He M, Nie C, He M, Pan Q, Liu C, et al. Biomineralized metal–organic framework nanoparticles enable enzymatic rolling circle amplification in living cells for ultrasensitive MicroRNA imaging. Anal Chem. 2019;91(14):9049–57.

    Article  CAS  Google Scholar 

  29. Zhou Y, Li B, Wang M, Wang J, Yin H, Ai S. Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta. 2017;184(11):4359–65.

    Article  CAS  Google Scholar 

  30. Cheng B, Xie R, Dong L, Chen X. Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances. Chembiochem. 2016;17(1):11–27.

    Article  CAS  Google Scholar 

  31. Jaiswal M, Tran TT, Li Q, Yan X, Zhou M, Kundu K, et al. A metabolically engineered spin-labeling approach for studying glycans on cells. Chem Sci. 2020;11(46):12522–32.

    Article  CAS  Google Scholar 

  32. Huang M, Yang J, Wang T, Song J, Xia J, Wu L, et al. Homogeneous, low-volume, efficient, and sensitive quantitation of circulating exosomal PD-L1 for cancer diagnosis and immunotherapy response prediction. Angew Chem. 2020;132(12):4830–5.

    Article  Google Scholar 

  33. Li C-W, Lim S-O, Chung EM, Kim Y-S, Park AH, Yao J, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 2018;33(2):187–201. e10.

    Article  CAS  Google Scholar 

  34. Li C-W, Lim S-O, Xia W, Lee H-H, Chan L-C, Kuo C-W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7(1):1–11.

    Google Scholar 

  35. Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, et al. Coupling aptamer-based protein tagging with metabolic glycan labeling for in situ visualization and biological function study of exosomal protein-specific glycosylation. Angew Chem. 2021;60(33):18111–5.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81672112, 81972025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoming Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Qian, H., Zhou, X. et al. Proximity ligation assay mediated rolling circle amplification strategy for in situ amplified imaging of glycosylated PD-L1. Anal Bioanal Chem 413, 6929–6939 (2021). https://doi.org/10.1007/s00216-021-03659-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03659-z

Keywords

Navigation