Skip to main content

Advertisement

Log in

Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

This article has been updated

Abstract

Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10–15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and − 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/μM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 01 October 2021

    Springer Nature’s version of this paper was updated to present the missing Electronic Supplementary Material file.

References

  1. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater. 2009;19(17):2782–9.

    Article  CAS  Google Scholar 

  2. Yan R, Qiu S, Tong L, Qian Y. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs. Chem Speciat Bioavailab. 2016;28(1–4):72–7.

    Article  CAS  Google Scholar 

  3. Albero J, Mateo D, García H. Graphene-based materials as efficient photocatalysts for water splitting. Molecules. 2019;24(5):906.

    Article  PubMed Central  CAS  Google Scholar 

  4. Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res. 2013;46(10):2329–39.

    Article  PubMed  CAS  Google Scholar 

  5. Unarunotai S, Murata Y, Chialvo CE, Kim H, MacLaren S, Mason N, et al. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl Phys Lett. 2009;95(20):202101.

    Article  CAS  Google Scholar 

  6. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5(8):574–8.

    Article  PubMed  CAS  Google Scholar 

  7. Das SR, Nian Q, Cargill AA, Hondred JA, Ding S, Saei M, et al. 3D nanostructured inkjet printed graphene: via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale. 2016;8(35):15870–9.

    Article  PubMed  CAS  Google Scholar 

  8. Moya A, Gabriel G, Villa R, Javier del Campo F. Inkjet-printed electrochemical sensors. Curr Opin Electrochem. 2017;3(1):29–39.

    Article  CAS  Google Scholar 

  9. Huang X, Leng T, Zhu M, Zhang X, Chen J, Chang K, et al. Highly flexible and conductive printed graphene for wireless wearable communications applications. Sci Rep. 2016;5(1):18298.

    Article  CAS  Google Scholar 

  10. Fu K, Wang YY, Yan C, Yao Y, Chen Y, Dai J, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater. 2016;28(13):2587–94.

    Article  PubMed  CAS  Google Scholar 

  11. Das SR, Srinivasan S, Stromberg LR, He Q, Garland N, Straszheim WE, et al. Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing. Nanoscale. 2017;9(48):19058–65.

  12. Secor EB, Prabhumirashi PL, Puntambekar K, Geier ML, Hersam MC. Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett [Internet]. 2013;4(8):1347–51 Available from: https://pubs.acs.org/sharingguidelines.

    Article  CAS  Google Scholar 

  13. Secor EB, Ahn BY, Gao TZ, Lewis JA, Hersam MC. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater. 2015;27(42):6683–8.

    Article  PubMed  CAS  Google Scholar 

  14. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun. 2014;5:5714.

  15. Ye R, James DK, Tour JM. Laser-induced graphene. Acc Chem Res. 2018;51(7):1609–20.

    Article  PubMed  CAS  Google Scholar 

  16. Vanegas D, Patiño L, Mendez C, Oliveira D, Torres A, Gomes C, et al. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors [Internet]. 2018;8(2):42 Available from: http://www.mdpi.com/2079-6374/8/2/42.

    Article  CAS  Google Scholar 

  17. Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sensors [Internet]. 2017;2(5):616–20 Available from: https://pubs.acs.org/sharingguidelines.

    Article  CAS  Google Scholar 

  18. Zhang J, Zhang C, Sha J, Fei H, Li Y, Tour JM. Efficient water-splitting electrodes based on laser-induced graphene. ACS Appl Mater Interfaces. 2017;9(32):26840–7.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Ren M, Li Y, Tour JM. In situ synthesis of efficient water oxidation catalysts in laser-induced graphene. ACS Energy Lett. 2018;3(3):677–83.

    Article  CAS  Google Scholar 

  20. Garland NT, McLamore ES, Cavallaro ND, Mendivelso-Perez D, Smith EA, Jing D, et al. Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl Mater Interfaces [Internet]. 2018;10(45):39124–33 Available from: www.acsami.org.

    Article  CAS  Google Scholar 

  21. An Q, Gan S, Xu J, Bao Y, Wu T, Kong H, et al. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem Commun. 2019;107:106553.

    Article  CAS  Google Scholar 

  22. Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, et al. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sensors. 2020;5(7):1900–11.

  23.  Tao Z, Raffel RA, Souid A-K, Goodisman J. Kinetic studies on enzyme-catalyzed reactions: oxidation of glucose, Decomposition of Hydrogen Peroxide and Their Combination. Biophys J. 2009;96(7):2977–88.

  24. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol. 2020;38(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  25. Kim Y, Amemiya S. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane. Anal Chem. 2008;80(15):6056–65.

    Article  PubMed  CAS  Google Scholar 

  26. Malon A, Radu A, Qin W, Qin Y, Ceresa A, Maj-Zurawska M, et al. Improving the detection limit of anion-selective electrodes: An iodide-selective membrane with a Nanomolar detection limit. Anal Chem. 2003;75(15):3865–71.

    Article  PubMed  CAS  Google Scholar 

  27. Kucherenko IS, Sanborn D, Chen B, Garland N, Serhan M, Forzani E, et al. Ion-selective sensors based on laser-induced graphene for evaluating human hydration levels using urine samples. Adv Mater Technol. 2020;5(6):1901037.

  28. Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes.  TrAC, Trends Anal. Chem. 2016;76:102–14.

  29. Novell M, Guinovart T, Blondeau P, Rius FX, Andrade FJ. A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. Lab Chip [Internet]. 2014;14(7):1308–14 [cited 2021 Feb 16] Available from: www.rsc.org/loc.

    Article  CAS  Google Scholar 

  30. Lindner E, Gyurcsányi RE. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem. 2009 Jan;13(1):51–68.

    Article  CAS  Google Scholar 

  31. Nikolskii BP, Materova EA. Solid contact in membrane ion-selective electrodes. Ion-selective electrode Rev. 1985;7(1):3–39.

    Article  CAS  Google Scholar 

  32. van de Velde L, d’Angremont E, Olthuis W. Solid contact potassium selective electrodes for biomedical applications – a review. 160, Talanta. 2016;160:56–65.

  33. Kurra N, Jiang Q, Nayak P, Alshareef HN. Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today. 2019;24:81–102.

  34. Zuliani C, Diamond D. Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim Acta. 2012;84:29–34.

  35. Kucherenko IS, Sanborn D, Chen B, Garland N, Serhan M, Forzani E, et al. Ion-selective sensors based on laser-induced graphene for evaluating human hydration levels using urine samples. Adv Mater Technol. 2020;5(6):1901037.

    Article  CAS  Google Scholar 

  36. Dimeski G, Badrick T, John AS. Ion selective electrodes (ISEs) and interferences—a review. Clin Chim Acta. 2010;411(5–6):309–17.

    Article  PubMed  CAS  Google Scholar 

  37. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis [Internet]. 2010;22(10):1027–36. [cited 2020 Jan 3] Available from:. https://doi.org/10.1002/elan.200900571.

    Article  CAS  Google Scholar 

  38. Bucur B, Munteanu FD, Marty JL, Vasilescu A. Advances in enzyme-based biosensors for pesticide detection, vol. 8. Biosensors: MDPI AG; 2018. p. 27.

    Google Scholar 

  39. Keay RW, McNeil CJ. Separation-free electrochemical immunosensor for rapid determination of atrazine. Biosens Bioelectron. 1998;13(9):963–70.

    Article  PubMed  CAS  Google Scholar 

  40. Songa EA, Arotiba OA, Owino JHO, Jahed N, Baker PGL, Iwuoha EI. Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry. 2009;75(2):117–23.

    Article  PubMed  CAS  Google Scholar 

  41. Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem. 2017;1:0003.

  42. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater. 2016;28(2):215–30.

    Article  PubMed  CAS  Google Scholar 

  43. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. ACS Catal. 2016;6:8069–97.

  44. Buss JA, Hirahara M, Ueda Y, Agapie T. Molecular mimics of heterogeneous metal phosphides: thermochemistry, hydride-proton isomerism, and HER reactivity. Angew Chem Int Ed. 2018;57(50):16329–33.

    Article  CAS  Google Scholar 

  45. Tan Y, Wang H, Liu P, Shen Y, Cheng C, Hirata A, et al. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ Sci. 2016;9(7):2257–61.

    Article  CAS  Google Scholar 

  46. Trotochaud L, Young SL, Ranney JK, Boettcher SW. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc. 2014;136(18):6744–53.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang B, Lui YH, Gaur APS, Chen B, Tang X, Qi Z, et al. Hierarchical FeNiP@ultrathin carbon nanoflakes as alkaline oxygen evolution and acidic hydrogen evolution catalyst for efficient water electrolysis and organic decomposition. ACS Appl Mater Interfaces. 2018;10(10):8739–48.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang B, Qi Z, Wu Z, Lui YH, Kim TH, Tang X, et al. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett. 2019;4(1):328–36.

    Article  CAS  Google Scholar 

  49. Feng LL, Fan M, Wu Y, Liu Y, Li GD, Chen H, et al. Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J Mater Chem A. 2016;4(18):6860–7.

    Article  CAS  Google Scholar 

  50. Song X, Zhao H, Fang K, Lou Y, Liu Z, Liu C, et al. Effect of platinum electrode materials and electrolysis processes on the preparation of acidic electrolyzed oxidizing water and slightly acidic electrolyzed water. RSC Adv. 2019;9(6):3113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nayak P, Jiang Q, Kurra N, Wang X, Buttner U, Alshareef HN. Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. J Mater Chem A. 2017;5(38):20422–7.

    Article  CAS  Google Scholar 

  52. He Q, Das SR, Garland NT, Jing D, Hondred JA, Cargill AA, et al. Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing. ACS Appl Mater Interfaces. 2017;9(14):12719–27.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang J, Guo Y, Li S, Xu H. A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore. Meas Sci Technol. 2016;27(10):105101.

    Article  CAS  Google Scholar 

  54. Brooks T, Keevil CW. A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol. 1997;24(3):203–6.

    Article  PubMed  CAS  Google Scholar 

  55. Chen B, Garland NT, Geder J, Pruessner M, Mootz E, Cargill A, et al. Platinum nanoparticle decorated SiO 2 microfibers as catalysts for micro unmanned underwater vehicle propulsion. ACS Appl Mater Interfaces. 2016;8(45):30941–7.

    Article  PubMed  CAS  Google Scholar 

  56. Marr KM, Chen B, Mootz EJ, Geder J, Pruessner M, Melde BJ, et al. High aspect ratio carbon nanotube membranes decorated with Pt nanoparticle urchins for micro underwater vehicle propulsion via H<inf>2</inf>O<inf>2</inf> decomposition. ACS Nano. 2015;9(8):7791–803.

    Article  PubMed  CAS  Google Scholar 

  57. Claussen JC, Daniele MA, Geder J, Pruessner M, Makinen AJ, Melde BJ, et al. Platinum-paper micromotors: an urchin-like nanohybrid catalyst for green monopropellant bubble-thrusters. ACS Appl Mater Interfaces. 2014;6(20):17837–47.

    Article  PubMed  CAS  Google Scholar 

  58. Chen B, Gsalla A, Gaur A, Lui YH, Tang X, Geder J, et al. Porous wood monoliths decorated with platinum nano-urchins as catalysts for underwater micro-vehicle propulsion via H 2 O 2 decomposition. ACS Appl Nano Mater. 2019;2(7):4143–9.

    Article  CAS  Google Scholar 

  59. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401.

    Article  PubMed  CAS  Google Scholar 

  60. Brownson DAC, Smith GC, Banks CE. Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. R Soc Open Sci. 2017;4(11):171128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Liu J, Zhang L, Yang C, Tao S. Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film. J Mater Chem A. 2019;7(37):21168–75.

    Article  CAS  Google Scholar 

  62. Ye R, Peng Z, Wang T, Xu Y, Zhang J, Li Y, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano. 2015;9(9):9244–51.

    Article  PubMed  CAS  Google Scholar 

  63. Li J, Cassell A, Delzeit L, Han J, Meyyappan M. Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J Phys Chem B. 2002;106(36):9299–305.

    Article  CAS  Google Scholar 

  64. Moore RR, Banks CE, Compton RG. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal Chem. 2004;76(10):2677–82.

    Article  PubMed  CAS  Google Scholar 

  65. Kim JH, Hwang J-Y, Hwang HR, Kim HS, Lee JH, Seo J-W, et al. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci Rep. 2018;8(1):1375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Youn DH, Jang JSJ-W, Kim JY, Jang JSJ-W, Choi SH, Lee JS. Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci Rep. 2015;4(1):5492.

    Article  CAS  Google Scholar 

  67. Li F, Ye J, Zhou M, Gan S, Zhang Q, Han D, et al. All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst. 2012;137(3):618–23.

    Article  PubMed  CAS  Google Scholar 

  68. Fouskaki M, Chaniotakis N. Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst. 2008;133(8):1072–5.

    Article  PubMed  CAS  Google Scholar 

  69. Bono MJ, Reygaert WC. Urinary tract infection. [Internet]. StatPearls. StatPearls Publishing; 2021 [Cited 2021 Apr 16].

  70. Laboratory assessment of kidney disease. In: Pocket companion to Brenner and Rector’s The kidney. Elsevier; 2011. p. 21–41.

  71. Wan Salim WWA, Hermann AC, Zietchek MA, Pfluger JE, Park JH, ul Haque A, et al. Ion-selective electrode biochip for applications in a liquid environment. In: International Conference for Innovation in Biomedical Engineering and Life. Sciences. 2016:86–93.

  72. Han W-S, Chung K-C, Kim M-H, Ko H-B, Lee Y-H, Hong T-K. A hydrogen ion-selective poly(aniline) solid contact electrode based on dibenzylpyrenemethylamine Ionophore for highly acidic solutions. Anal Sci. 2004;20(10):1419–22.

    Article  PubMed  CAS  Google Scholar 

  73. Piao M-H, Yoon J-H, Jeon G, Shim Y-B. Characterization of all solid state hydrogen ion selective electrode based on PVC-SR hybrid membranes. Sensors. 2003;3(6):192–201.

    Article  CAS  Google Scholar 

  74. Lewenstam A. Routines and challenges in clinical application of electrochemical ion-sensors. Electroanalysis. 2014;26(6):1171–81.

    Article  CAS  Google Scholar 

  75. Simonian AL, Good TA, Wang SS, Wild JR. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal Chim Acta. 2005;534(1):69–77.

    Article  CAS  Google Scholar 

  76. Haandel MJH. van. Structure, function and operational stability of peroxidases. PhD Thesis, Wageningen University, 2000. ISBN 9789058082855.

  77. Carnauba R, Baptistella A, Paschoal V, Hübscher G. Diet-induced low-grade metabolic acidosis and clinical outcomes: a review. Nutrients. 2017;9(6):538.

    Article  PubMed Central  CAS  Google Scholar 

  78. Leonberg-Yoo AK, Tighiouart H, Levey AS, Beck GJ, Sarnak MJ. Urine potassium excretion, kidney failure, and mortality in CKD. Am J Kidney Dis. 2017;69(3):341–9.

    Article  PubMed  CAS  Google Scholar 

  79. Udensi U, Tchounwou P. Potassium homeostasis, oxidative stress, and human disease. Int J Clin Exp Physiol. 2017;4(3):111.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Aoi W, Marunaka Y. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. Biomed Res Int. 2014;2014:1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.C. and C.L.G . gratefully acknowledges funding support for this work by the National Science Foundation under award number ECCS-1841649 and CMMI-2037026 as well as from the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2020-67021-31375, 2021-67021-34457, and 2021-67011-35130, and by the by the Office of Naval Research under award number N000142012375.

Author information

Authors and Affiliations

Authors

Contributions

Ivan S. Kucherenko: validation, investigation, writing—original draft. Bolin Chen: validation, investigation, writing—original draft. Zachary Johnson: investigation, writing—review and editing. Alexander Wilkins: investigation. Delaney Sanborn: investigation. Natalie Figueroa-Felix: investigation. Deyny Mendivelso-Perez: investigation. Emily A. Smith: investigation. Carmen Gomes: supervision, project administration, conceptualization. Jonathan C. Claussen: supervision, project administration, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Jonathan C. Claussen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary information

ESM 1

(PDF 546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, I.S., Chen, B., Johnson, Z. et al. Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Anal Bioanal Chem 413, 6201–6212 (2021). https://doi.org/10.1007/s00216-021-03519-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03519-w

Keywords

Navigation