Skip to main content
Log in

Luminescence lifetime imaging of ultra-long room temperature phosphorescence on a smartphone

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Luminescence lifetime imaging plays an important role in distinguishing the luminescence decay rates in time-resolved luminescence imaging. However, traditional imaging instruments used for detecting lifetimes within milliseconds would be time-consuming when imaging ultra-long luminescence lifetimes over subseconds. Herein, we present an accessible and simple optical system for detecting lifetimes of persistent luminescence. A smartphone integrated with a UV LED, a dichroic mirror, and a lens was used for recording the persistent luminescence. With only a few seconds of data acquisition, a luminescence lifetime image could be processed from the video by exponential fitting of the gray level of each pixel to the delay time. Since this approach only requires single excitation, no synchronous control is needed, greatly simplifying the apparatus and saving the cost. The apparatus was successfully used for ultra-long luminescence lifetime imaging of mouse tissue dyed with a persistent luminescence molecule. This miniaturized apparatus exhibits huge potentiality in time-resolved luminescence imaging for luminescence study and biological detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang J, Zhen X, Wang B, Gao XM, Ren ZC, Wang JQ, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun. 2018;9:840.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xiong Y, Zhao Z, Zhao WJ, Ma HL, Peng Q, He ZK, et al. Designing efficient and ultralong pure organic room-temperature phosphorescent materials by structural isomerism. Angew Chem Int Ed. 2018;57:7997–8001.

    Article  CAS  Google Scholar 

  3. Tao Y, Chen RF, Li HH, Yuan J, Wan YF, Jiang H, et al. Resonance-activated spin-flipping for efficient organic ultralong room-temperature phosphorescence. Adv Mater. 2018;30:1803856.1–8.

    Google Scholar 

  4. Hu HW, Meier F, Zhao DM, Abe Y, Gao Y, Chen BB, et al. Efficient room-temperature phosphorescence from organic-inorganic hybrid perovskites by molecular engineering. Adv Mater. 2018;30:1707621.

    Article  Google Scholar 

  5. Gu L, Shi HF, Gu MX, Ling K, Ma HL, Cai SZ, et al. Dynamic ultralong organic phosphorescence by photoactivation. Angew Chem Int Ed. 2018;57:8425–31.

    Article  CAS  Google Scholar 

  6. Zhen X, Tao Y, An ZF, Chen P, Xu CJ, Chen RF, et al. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv Mater. 2017;29:1606665.1–7.

    Google Scholar 

  7. Yu YC, Kwon MS, Jung J, Zeng YY, Kim M, Chung K, et al. Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew Chem Int Ed. 2017;56:16207–11.

    Article  CAS  Google Scholar 

  8. Shoji Y, Ikabata Y, Wang Q, Nemoto D, Sakamoto A, Tanaka N, et al. Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules. J Am Chem Soc. 2017;139:2728–33.

    Article  CAS  PubMed  Google Scholar 

  9. Fateminia SMA, Mao Z, Xu SD, Yang ZY, Chi ZG, Liu B. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew Chem Int Ed. 2017;56:12160–4.

    Article  CAS  Google Scholar 

  10. Yang ZY, Mao Z, Zhang XP, Ou DP, Mu YX, Zhang Y, et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew Chem Int Ed. 2016;55:2181–5.

    Article  CAS  Google Scholar 

  11. Palner M, Pu KY, Shao S, Rao JH. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew Chem Int Ed. 2015;54:11477–80.

    Article  CAS  Google Scholar 

  12. Hirata S, Totani K, Zhang JX, Yamashita T, Kaji H, Marder SR, et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv Funct Mater. 2013;23:3386–97.

    Article  CAS  Google Scholar 

  13. Tian D, Zhu ZC, Xu L, Cong H, Zhu JT. Intramolecular electronic coupling for persistent room-temperature luminescence for smartphone based time-gated fingerprint detection. Mater Horiz. 2019;6:1215–21.

    Article  CAS  Google Scholar 

  14. Liang L, Chen N, Jia YY, Ma QQ, Wang J, Yuan Q, et al. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019;12:1279–92.

    Article  CAS  Google Scholar 

  15. Zhang KY, Yu Q, Wei HJ, Liu SJ, Zhao Q, Huang W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev. 2018;118:1770–839.

    Article  CAS  PubMed  Google Scholar 

  16. Ogoshi T, Tsuchida H, Kakuta T, Yamagishi TA, Taema A, Ono T, et al. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv Funct Mater. 2018;28:1707369.

    Article  Google Scholar 

  17. Ma X, Xu C, Wang J, Tian H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew Chem Int Ed. 2018;57:10854–8.

    Article  CAS  Google Scholar 

  18. Long P, Feng YY, Cao C, Li Y, Han JK, Li SW, et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv Funct Mater. 2018;28:1800791.

    Article  Google Scholar 

  19. Li QJ, Zhou M, Yang MY, Yang QF, Zhang ZX, Shi J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat Commun. 2018;9:734.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen XF, Xu C, Wang T, Zhou C, Du JJ, Wang ZP, et al. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: emission enhancement and chemical conjugation. Angew Chem Int Ed. 2016;55:9872–6.

    Article  CAS  Google Scholar 

  21. Koren K, Mosshammer M, Scholz VV, Borisov SM, Holst G, Kuhl M. Luminescence lifetime imaging of chemical sensors-a comparison between time-domain and frequency-domain based camera systems. Anal Chem. 2019;91(5):3233–8.

    Article  CAS  PubMed  Google Scholar 

  22. Paterson AS, Raja B, Mandadi V, Townsend B, Lee M, Buell A, et al. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip. 2017;17:1051–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu ZC. Smartphone-based apparatus for measuring upconversion luminescence lifetimes. Anal Chim Acta. 2019;1054:122–7.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou Y, Qin W, Du C, Gao H, Zhu F, Liang G. Long-lived room-temperature phosphorescence for visual and quantitative detection of oxygen. Angew Chem Int Ed. 2019;58:12102–6.

    Article  CAS  Google Scholar 

  25. Liu XW, Ji Q, Hu QY, Li C, Chen ML, Sun J, et al. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting. ACS Appl Mater Inter. 2019;11:30146–53.

    Article  CAS  Google Scholar 

  26. Hu XX, Wang YQ, Liu HY, Wang J, Tan YN, Wang FB, et al. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes. Chem Sci. 2017;8:466–72.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang DM, Liu QJ. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 2016;75:273–84.

    Article  CAS  PubMed  Google Scholar 

  28. Yu HJ, Tan YF, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86:8805–13.

    Article  CAS  PubMed  Google Scholar 

  29. Khatua S, Orrit M. Toward single-molecule microscopy on a smart phone. ACS Nano. 2013;7:8340–3.

    Article  CAS  PubMed  Google Scholar 

  30. Lu YQ, Zhao JB, Zhang R, Liu YJ, Liu DM, Goldys EM, et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics. 2014;8:33–7.

    Article  Google Scholar 

  31. Zhu ZC, Tian D, Gao PL, Wang K, Li YC, Shu XW, et al. Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging. J Am Chem Soc. 2018;140:17484–91.

    Article  CAS  PubMed  Google Scholar 

  32. Baggaley E, Botchway SW, Haycock JW, Morris H, Sazanovich IV, Williams JAG, et al. Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chem Sci. 2014;5:879–86.

    Article  CAS  Google Scholar 

  33. Grichine A, Haefele A, Pascal S, Duperray A, Michel R, Andraud C, et al. Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation. Chem Sci. 2014;5:3475–85.

    Article  CAS  Google Scholar 

  34. Petrasek Z, Bolivar JM, Nidetzky B. Confocal luminescence lifetime imaging with variable scan velocity and its application to oxygen sensing. Anal Chem. 2016;88:10736–43.

    Article  CAS  PubMed  Google Scholar 

  35. Luo T, Lu Y, Liu SD, Lin DY, Qu JL. Phasor-FLIM as a screening tool for the differential diagnosis of actinic keratosis, Bowen’s disease, and basal cell carcinoma. Anal Chem. 2017;89:8104–11.

    Article  CAS  PubMed  Google Scholar 

  36. Qu JL, Liu LX, Chen DN, Lin ZY, Xu GX, Guo BP, et al. Temporally and spectrally resolved sampling imaging with a specially designed streak camera. Opt Lett. 2006;31:368–70.

    Article  PubMed  Google Scholar 

  37. Biskup C, Zimmer T, Benndorf K. FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat Biotechnol. 2004;22:220–4.

    Article  CAS  PubMed  Google Scholar 

  38. Schlachter S, Elder AD, Esposito A, Kaminski GS, Frank JH, van Geest LK, et al. mhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy. Opt Express. 2009;17:1557–70.

    Article  CAS  PubMed  Google Scholar 

  39. Bui AT, Grichine A, Duperray A, Lidon P, Riobe F, Andraud C, et al. Terbium(III) luminescent complexes as millisecond-scale viscosity probes for lifetime imaging. J Am Chem Soc. 2017;139:7693–6.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu ZC, Shu XW. Global luminescence lifetime imaging of thermally activated delayed fluorescence on an auto-phase-locked time-gated microscope. Sensors Actuators B Chem. 2019;280:177–82.

    Article  CAS  Google Scholar 

  41. Zhu ZC, Tian D, Shu XW. Auto-phase-locked time-gated luminescence detection for background-free upconversion spectra measurement and true-color biological imaging. Sensors Actuators B Chem. 2018;260:289–94.

    Article  CAS  Google Scholar 

  42. Gu MX, Shi HF, Ling K, Lv AQ, Huang KW, Singh M, et al. Polymorphism-dependent dynamic ultralong organic phosphorescence. Research. 2020;8183450.

  43. Yang J, Ren ZC, Chen B, Fang MM, Zhao ZJ, Tang B, et al. Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties? J Mater Chem C. 2017;5:9242–6.

    Article  CAS  Google Scholar 

  44. Yu Y, Fan YY, Wang C, Wei Y, Liao QY, Li QQ, et al. Phenanthroimidazole derivatives with minor structural differences: crystalline polymorphisms, different molecular packing, and totally different mechanoluminescence. J Mater Chem C. 2019;7:13759–63.

    Article  CAS  Google Scholar 

  45. Xie YJ, Ge YW, Peng Q, Li CG, Li QQ, Li Z. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv Mater. 2017;29:1606829.

    Article  Google Scholar 

  46. Zhang T, Ma X, Tian H. A facile way to obtain near-infrared room-temperature phosphorescent soft materials based on Bodipy dyes. Chem Sci. 2020;11:482–7.

    Article  CAS  PubMed  Google Scholar 

  47. Huang J, Pu K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59(29):11717–31.

    Article  CAS  Google Scholar 

  48. Lyu Y, Cui D, Huang J, Fan W, Miao Y, Pu K. Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew Chem Int Ed. 2019;58(15):4983–7.

    Article  CAS  Google Scholar 

  49. Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol. 2017;35(11):1102–10.

    Article  CAS  PubMed  Google Scholar 

  50. Sun SK, Wang HF, Yan XP. Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc Chem Res. 2018;51:1131–43.

    Article  CAS  PubMed  Google Scholar 

  51. Fan Y, Wang PY, Lu YQ, Wang R, Zhou L, Zheng XL, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol. 2018;13:941–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank HUST Analytical and Testing Center for allowing us to use its facilities.

Funding

We gratefully acknowledge financial support from the National Natural Science Foundation of China (51803065, 52073109), Program for HUST Academic Frontier Youth Team (2015-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Tian or Jintao Zhu.

Ethics declarations

Ethics approval

The animal study was conducted according to the Guide of the Care and Use of Laboratory Animals of Huazhong University of Science and Technology (HUST), approved by the Institutional Animal Care and Use Committee, Tongji Medical College, HUST.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 4

(PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Sun, Y., Ma, T. et al. Luminescence lifetime imaging of ultra-long room temperature phosphorescence on a smartphone. Anal Bioanal Chem 413, 3291–3297 (2021). https://doi.org/10.1007/s00216-021-03266-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03266-y

Keywords

Navigation