Skip to main content

Advertisement

Log in

Strategies for the detection of target analytes using microfluidic paper-based analytical devices

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic paper-based analytical devices (μPADs) have developed rapidly in recent years, because of their advantages, such as small sample volume, rapid detection rates, low cost, and portability. Due to these characteristics, they can be used for in vitro diagnostics in the laboratory, or in the field, for a variety of applications, including food evaluation, disease screening, environmental monitoring, and drug testing. This review will present various detection methods employed by μPADs and their respective applications for the detection of target analytes. These include colorimetry, electrochemistry, chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence-based methodologies. At the same time, the choice of labeling material and the design of microfluidic channels are also important for detection results. The construction of novel nanocomponents and different smart structures of paper-based devices have improved the performance of μPADs and we will also highlight some of these in this manuscript. Additionally, some key challenges and future prospects for the use of μPADs are briefly discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73. https://doi.org/10.1038/nature05058.

    Article  CAS  PubMed  Google Scholar 

  2. Terry SC, Jerman JH, Angell JB. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices. 1979;26(12):1880–6. https://doi.org/10.1109/t-ed.1979.19791.

    Article  Google Scholar 

  3. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Lüdi H, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr A. 1992;593(1):253–8. https://doi.org/10.1016/0021-9673(92)80293-4.

    Article  CAS  Google Scholar 

  4. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem. 2007;119(8):1340–2. https://doi.org/10.1002/ange.200603817.

    Article  Google Scholar 

  5. Barr MC, Rowehl JA, Lunt RR, Xu J, Wang A, Boyce CM, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater. 2011;23(31):3500–5. https://doi.org/10.1002/adma.201101263.

    Article  CAS  Google Scholar 

  6. Bracher PJ, Gupta M, Mack ET, Whitesides GM. Heterogeneous films of Ionotropic hydrogels fabricated from delivery templates of patterned paper. ACS Appl Mater Interfaces. 2009;1(8):1807–12. https://doi.org/10.1021/am900340m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip. 2010;10(20):2659. https://doi.org/10.1039/c004821f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu Z, Zhao M, Sheng Y, Bentolila LA, Tang Y. Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem. 2011;83(6):2324–9. https://doi.org/10.1021/ac103236g.

    Article  CAS  PubMed  Google Scholar 

  9. Kouisni L, Rochefort D. Confocal microscopy study of polymer microcapsules for enzyme immobilisation in paper substrates. J Appl Polym Sci. 2009;111(1):1–10. https://doi.org/10.1002/app.28997.

    Article  CAS  Google Scholar 

  10. Wang S, Ge L, Song X, Yan M, Ge S, Yu J, et al. Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. Analyst. 2012;137(16):3821. https://doi.org/10.1039/c2an35266d.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez AW. Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis. 2011;3(23):2589–92. https://doi.org/10.4155/bio.11.258.

    Article  CAS  PubMed  Google Scholar 

  12. Wu G, Muhammad. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ. 2012;90(12):914–20. https://doi.org/10.2471/blt.12.102780.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Banks J, Watt J. On a new method of preparing a test liquor to shew the presence of acids and alkalies in chemical mixtures. By Mr. James Watt, Engineer; Communicated by Sir Joseph Banks, Bart. P. R. S. Philosophical Transactions of the Royal Society of London. 1784;74:419–22.

    Article  Google Scholar 

  14. West PW. Selective spot test for copper. Industrial & Engineering Chemistry Analytical Edition. 1945;17(11):740–1. https://doi.org/10.1021/i560147a024.

    Article  CAS  Google Scholar 

  15. Comer JP. Semiquantitative specific test paper for glucose in urine. Anal Chem. 1956;28(11):1748–50. https://doi.org/10.1021/ac60119a030.

    Article  CAS  Google Scholar 

  16. Schersten B, Kuhl C, Hollender A, Ekman R. Blood glucose measurement with dextrostix and new reflectance meter. BMJ. 1974;3(5927):384–7. https://doi.org/10.1136/bmj.3.5927.384.

    Article  CAS  PubMed  Google Scholar 

  17. Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89. https://doi.org/10.1016/j.bios.2015.10.032.

    Article  CAS  PubMed  Google Scholar 

  18. Qamar AZ, Parker G, Kinsel GR, Shamsi MH. Evolution of wax-on-plastic microfluidics for sub-microliter flow dynamics and its application in distance-based assay. Microfluidics and Nanofluidics. 2019;23(6). https://doi.org/10.1007/s10404-019-2249-3.

  19. Fujisaki S, Shibata H, Yamada K, Suzuki K, Citterio D. Printed low-cost microfluidic analytical devices based on a transparent substrate. Analyst. 2019;144(8):2746–54. https://doi.org/10.1039/c8an02304b.

    Article  CAS  PubMed  Google Scholar 

  20. Asefifeyzabadi N, Alkhaldi R, Qamar AZ, Pater AA, Patwardhan M, Gagnon KT, et al. Label-free electrochemical detection of CGG repeats on inkjet printable 2D layers of MoS2. ACS Appl Mater Interfaces. 2020;12(46):52156–65. https://doi.org/10.1021/acsami.0c14912.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Wang J, Liu Z, Wang X, Li X, Shan G. A simple and versatile paper-based electrochemiluminescence biosensing platform for hepatitis B virus surface antigen detection. Biochem Eng J. 2018;129:1–6. https://doi.org/10.1016/j.bej.2017.10.012.

    Article  CAS  Google Scholar 

  22. Cincotto FH, Fava EL, Moraes FC, Fatibello-Filho O, Faria RC. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta. 2019;195:62–8. https://doi.org/10.1016/j.talanta.2018.11.022.

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Chen Y, Zhang L, Liu W. An inkjet printing paper-based immunodevice for fluorescence determination of immunoglobulin G. Anal Methods. 2019;11(27):3452–9. https://doi.org/10.1039/c9ay00893d.

    Article  CAS  Google Scholar 

  24. Li Z, Li M, Li F, Zhang M. Paper-based chemiluminescence enzyme-linked immunosorbent assay enhanced by biotin-streptavidin system for high-sensitivity C-reactive protein detection. Anal Biochem. 2018;559:86–90. https://doi.org/10.1016/j.ab.2018.08.018.

    Article  CAS  PubMed  Google Scholar 

  25. Liu M-M, Lian X, Liu H, Guo Z-Z, Huang H-H, Lei Y, et al. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta. 2019;200:511–7. https://doi.org/10.1016/j.talanta.2019.03.089.

    Article  CAS  PubMed  Google Scholar 

  26. Núnez-Bajo E, Blanco-López MC, Costa-García A, Fernández-Abedul MT. In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta. 2018;178:160–5. https://doi.org/10.1016/j.talanta.2017.08.104.

    Article  CAS  PubMed  Google Scholar 

  27. Alahmad W, Tungkijanansin N, Kaneta T, Varanusupakul P. A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples. Talanta. 2018;190:78–84. https://doi.org/10.1016/j.talanta.2018.07.056.

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Li L, Zhang Y, Zhang L, Ge S, Yu J. Auto-cleaning paper-based electrochemiluminescence biosensor coupled with binary catalysis of cubic Cu2O-Au and polyethyleneimine for quantification of Ni2+ and Hg2+. Biosens Bioelectron. 2019;126:339–45. https://doi.org/10.1016/j.bios.2018.11.008.

    Article  CAS  PubMed  Google Scholar 

  29. Liu L, Xie M-R, Fang F, Wu Z-Y. Sensitive colorimetric detection of Cu2+ by simultaneous reaction and electrokinetic stacking on a paper-based analytical device. Microchem J. 2018;139:357–62. https://doi.org/10.1016/j.microc.2018.03.021.

    Article  CAS  Google Scholar 

  30. Patir K, Gogoi SK. Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper(ii) and mercury(ii) ions in solutions as well as in filter paper-based microfluidic device. Nanoscale Advances. 2019;1(2):592–601. https://doi.org/10.1039/c8na00080h.

    Article  CAS  Google Scholar 

  31. Prabphal J, Vilaivan T, Praneenararat T. Fabrication of a paper-based turn-off fluorescence sensor for Cu 2+ ion from a pyridinium porphyrin. ChemistrySelect. 2018;3(3):894–9. https://doi.org/10.1002/slct.201702382.

    Article  CAS  Google Scholar 

  32. Shang Q, Zhang P, Li H, Liu R, Zhang C. A flow chemiluminescence paper-based microfluidic device for detection of chromium (III) in water. Journal of Innovative Optical Health Sciences. 2019;12(06):1950016. https://doi.org/10.1142/s1793545819500160.

    Article  CAS  Google Scholar 

  33. Shibata H, Ikeda Y, Hiruta Y, Citterio D. Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-02218-x.

  34. Zhou J, Li B, Qi A, Shi Y, Qi J, Xu H, et al. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip. Sens Actuators B: Chemical. 2020;305:127462. https://doi.org/10.1016/j.snb.2019.127462.

    Article  CAS  Google Scholar 

  35. Taghizadeh-Behbahani M, Hemmateenejad B, Shamsipur M. Colorimetric determination of acidity constant using a paper-based microfluidic analytical device. Chem Pap. 2018;72(5):1239–47. https://doi.org/10.1007/s11696-017-0357-7.

    Article  CAS  Google Scholar 

  36. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, et al. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem. 2014;86(19):9554–62. https://doi.org/10.1021/ac5019205.

    Article  CAS  PubMed  Google Scholar 

  37. Lee C-Y, Lei KF, Tsai S-W, Tsang N-M. Development of graphene-based sensors on paper substrate for the measurement of pH value of analyte. BioChip Journal. 2016;10(3):182–8. https://doi.org/10.1007/s13206-016-0304-7.

    Article  CAS  Google Scholar 

  38. Ge S, Zhao J, Wang S, Lan F, Yan M, Yu J. Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. Biosens Bioelectron. 2018;102:411–7. https://doi.org/10.1016/j.bios.2017.11.055.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Z, Ma X, Jia M, Li B, Rong J, Yang X. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D. Analyst. 2019;144(4):1282–91. https://doi.org/10.1039/c8an02051e.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Chu W, Liu W, Guo X, Jin Y, Li B. Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Microchimica Acta. 2018;185(3). https://doi.org/10.1007/s00604-018-2726-5.

  41. Fan Y, Shi S, Ma J, Guo Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron. 2019;135:1–7. https://doi.org/10.1016/j.bios.2019.03.063.

    Article  CAS  PubMed  Google Scholar 

  42. Jian Y, Wang H, Sun X, Zhang L, Cui K, Ge S, et al. Electrochemiluminescence cytosensing platform based on Ru(bpy)32+@silica-Au nanocomposite as luminophore and AuPd nanoparticles as coreaction accelerator for in situ evaluation of intracellular H2O2. Talanta. 2019;199:485–90. https://doi.org/10.1016/j.talanta.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Luo J, Liu J, Li X, Kong Z, Jin H, et al. Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. Biosens Bioelectron. 2018;107:47–53. https://doi.org/10.1016/j.bios.2018.02.012.

    Article  CAS  PubMed  Google Scholar 

  44. Wei B, Mao K, Liu N, Zhang M, Yang Z. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron. 2018;121:41–6. https://doi.org/10.1016/j.bios.2018.08.067.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Bao N, Luo X, Ding S-N. Patchy gold coated Fe 3 O 4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors. Biosens Bioelectron. 2018;114:44–51. https://doi.org/10.1016/j.bios.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  46. Bai Y, Lu Y, Wang K, Cheng Z, Qu Y, Qiu S et al. Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Letters. 2019;11(1). https://doi.org/10.1007/s40820-019-0285-x.

  47. Li F, Liu J, Guo L, Wang J, Zhang K, He J, et al. High-resolution temporally resolved chemiluminescence based on double-layered 3D microfluidic paper-based device for multiplexed analysis. Biosens Bioelectron. 2019;141:111472. https://doi.org/10.1016/j.bios.2019.111472.

    Article  CAS  PubMed  Google Scholar 

  48. Qi J, Li B, Wang X, Fu L, Luo L, Chen L. Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique. Anal Chem. 2018;90(20):11827–34. https://doi.org/10.1021/acs.analchem.8b01291.

    Article  CAS  PubMed  Google Scholar 

  49. Su Y, Liang Y, Wu H, Jiang J, Lai W, Zhang C. A three-dimensional cloth-based microfluidic label-free proximity hybridization-electrochemiluminescence biosensor for ultrasensitive detection of K-ras gene. Sens Actuators B: Chemical. 2019;296:126654. https://doi.org/10.1016/j.snb.2019.126654.

    Article  CAS  Google Scholar 

  50. Sun X, Li B, Tian C, Yu F, Zhou N, Zhan Y, et al. Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal Chim Acta. 2018;1007:33–9. https://doi.org/10.1016/j.aca.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  51. Yang R, Li F, Zhang W, Shen W, Yang D, Bian Z, et al. Chemiluminescence immunoassays for simultaneous detection of three heart disease biomarkers using magnetic carbon composites and three-dimensional microfluidic paper-based device. Anal Chem. 2019;91(20):13006–13. https://doi.org/10.1021/acs.analchem.9b03066.

    Article  CAS  PubMed  Google Scholar 

  52. Wu D, Zhang J, Xu F, Wen X, Li P, Zhang X et al. A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluidics and Nanofluidics. 2017;21(3). https://doi.org/10.1007/s10404-017-1879-6.

  53. Yang N, Chen C, Wang P, Sun J, Mao H. Structure optimization method of microfluidic paper chip based on image grey-level statistics for chromogenic reaction. Chemical Engineering and Processing - Process Intensification. 2019;143:107627. https://doi.org/10.1016/j.cep.2019.107627.

    Article  CAS  Google Scholar 

  54. Parker RW, Wilson DJ, Mace CR. Open software platform for automated analysis of paper-based microfluidic devices. Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-020-67639-6.

  55. Sachdev A, Samanta P, Kumar V, Garima, Kandhal K, Matai I. PMAA-CeO2 nanoparticle-based paper microfluidic device with customized image processing software for antioxidant assay. Anal Bioanal Chem. 2020;412(29):8197–209. https://doi.org/10.1007/s00216-020-02960-7.

    Article  CAS  PubMed  Google Scholar 

  56. Wang K, Yang J, Xu H, Cao B, Qin Q, Liao X, et al. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal Bioanal Chem. 2020;412(11):2517–28. https://doi.org/10.1007/s00216-020-02475-1.

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Li F, Cai Z, Liu K, Li J, Zhang B, et al. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal Bioanal Chem. 2018;410(10):2647–55. https://doi.org/10.1007/s00216-018-0939-4.

    Article  CAS  PubMed  Google Scholar 

  58. Trofimchuk E, Hu Y, Nilghaz A, Hua MZ, Sun S, Lu X. Development of paper-based microfluidic device for the determination of nitrite in meat. Food Chemistry. 2020;316:126396. https://doi.org/10.1016/j.foodchem.2020.126396.

  59. De Freitas SV, De Souza FR, Rodrigues Neto JC, Vasconcelos GA, Abdelnur PV, Vaz BG, et al. Uncovering the formation of color gradients for glucose colorimetric assays on microfluidic paper-based analytical devices by mass spectrometry imaging. Anal Chem. 2018;90(20):11949–54. https://doi.org/10.1021/acs.analchem.8b02384.

  60. Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, et al. A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst. 2015;140(6):1817–21. https://doi.org/10.1039/c4an02333a.

  61. Kasoju A, Shahdeo D, Khan AA, Shrikrishna NS, Mahari S, Alanazi AM et al. Fabrication of microfluidic device for Aflatoxin M1 detection in milk samples with specific aptamers. Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-020-60926-2.

  62. Fakhri N, Hosseini M, Tavakoli O. Aptamer-based colorimetric determination of Pb2+ using a paper-based microfluidic platform. Anal Methods. 2018;10(36):4438–44. https://doi.org/10.1039/c8ay01331d.

  63. Liu C, Miao Y, Zhang X, Zhang S, Zhao X. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles. Microchimica Acta. 2020;187(6). https://doi.org/10.1007/s00604-020-04333-4.

  64. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS. Simple, distance-based measurement for paper analytical devices. Lab Chip. 2013;13(12):2397. https://doi.org/10.1039/c3lc50072a.

  65. Shibata H, Hiruta Y, Citterio D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst. 2019;144(4):1178–86. https://doi.org/10.1039/c8an02146e.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Y, Chu W, Liu W, Guo X. Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice. Sens Actuators B: Chemical. 2018;260:452–9. https://doi.org/10.1016/j.snb.2017.12.197.

    Article  CAS  Google Scholar 

  67. Yamada K, Citterio D, Henry CS. “Dip-and-read” paper-based analytical devices using distance-based detection with color screening. Lab Chip. 2018;18(10):1485–93. https://doi.org/10.1039/c8lc00168e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu C, Gomez FA, Miao Y, Cui P, Lee W. A colorimetric assay system for dopamine using microfluidic paper-based analytical devices. Talanta. 2019;194:171–6. https://doi.org/10.1016/j.talanta.2018.10.039.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X-X, Song Y-Z, Fang F, Wu Z-Y. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone. Anal Bioanal Chem. 2018;410(11):2665–9. https://doi.org/10.1007/s00216-018-0965-2.

    Article  CAS  PubMed  Google Scholar 

  70. Dungchai W, Chailapakul O, Henry CS. Electrochemical detection for paper-based microfluidics. Anal Chem. 2009;81(14):5821–6. https://doi.org/10.1021/ac9007573.

    Article  CAS  PubMed  Google Scholar 

  71. Chaiyo S, Apiluk A, Siangproh W, Chailapakul O. High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection. Sens Actuators B: Chemical. 2016;233:540–9. https://doi.org/10.1016/j.snb.2016.04.109.

    Article  CAS  Google Scholar 

  72. Ming T, Wang Y, Luo J, Liu J, Sun S, Xing Y, et al. Folding paper-based aptasensor platform coated with novel nanoassemblies for instant and highly sensitive detection of 17β-estradiol. ACS Sensors. 2019;4(12):3186–94. https://doi.org/10.1021/acssensors.9b01633.

  73. Wang Y, Luo J, Liu J, Sun S, Xiong Y, Ma Y, et al. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2019;136:84–90. https://doi.org/10.1016/j.bios.2019.04.032.

  74. Cao Q, Liang B, Tu T, Wei J, Fang L, Ye X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019;9(10):5674–81. https://doi.org/10.1039/c8ra09157a.

  75. Alahmad W, Uraisin K, Nacapricha D, Kaneta T. A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium(iii). Anal Methods. 2016;8(27):5414–20. https://doi.org/10.1039/c6ay00954a.

  76. Liu F, Zhang C. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens Actuators B: Chemical. 2015;209:399–406. https://doi.org/10.1016/j.snb.2014.11.099.

  77. Yu J, Wang S, Ge L, Ge S. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron. 2011;26(7):3284–9. https://doi.org/10.1016/j.bios.2010.12.044.

  78. Yu J, Ge L, Huang J, Wang S, Ge S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip. 2011;11(7):1286. https://doi.org/10.1039/c0lc00524j.

  79. Hassanzadeh J, Al Lawati HAJ, Al Lawati I. Metal–organic framework loaded by rhodamine B as a novel chemiluminescence system for the paper-based analytical devices and its application for Total phenolic content determination in food samples. Anal Chem. 2019;91(16):10631–9. https://doi.org/10.1021/acs.analchem.9b01862.

    Article  CAS  PubMed  Google Scholar 

  80. Delaney JL, Hogan CF, Tian J, Shen W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. 2011;83(4):1300–6. https://doi.org/10.1021/ac102392t.

    Article  CAS  PubMed  Google Scholar 

  81. Wu L, Ma C, Zheng X, Liu H, Yu J. Paper-based electrochemiluminescence origami device for protein detection using assembled cascade DNA–carbon dots nanotags based on rolling circle amplification. Biosens Bioelectron. 2015;68:413–20. https://doi.org/10.1016/j.bios.2015.01.034.

    Article  CAS  PubMed  Google Scholar 

  82. Li L, Zhang Y, Liu F, Su M, Liang L, Ge S, et al. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode. Chem Commun. 2015;51(74):14030–3. https://doi.org/10.1039/c5cc05710h.

    Article  CAS  Google Scholar 

  83. Gao C, Yu H, Wang Y, Liu D, Wen T, Zhang L, et al. Paper-based constant potential electrochemiluminescence sensing platform with black phosphorus as a luminophore enabled by a perovskite solar cell. Anal Chem. 2020;92(10):6822–6. https://doi.org/10.1021/acs.analchem.0c01033.

    Article  CAS  PubMed  Google Scholar 

  84. Baynes C, Yoon J-Y. μPAD fluorescence scattering immunoagglutination assay for cancer biomarkers from blood and serum. SLAS TECHNOLOGY: Translating Life Sciences Innovation. 2018;23(1):30–43. https://doi.org/10.1177/2472630317731891.

  85. Yamada K, Takaki S, Komuro N, Suzuki K, Citterio D. An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst. 2014;139(7):1637. https://doi.org/10.1039/c3an01926h.

  86. Ali MM, Aguirre SD, Xu Y, Filipe CDM, Pelton R, Li Y. Detection of DNA using bioactive paper strips. Chem Commun. 2009;43:6640. https://doi.org/10.1039/b911559e.

  87. Kim Y, Jang G, Lee TS. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl Mater Interfaces. 2015;7(28):15649–57. https://doi.org/10.1021/acsami.5b04724.

  88. Chen X, Yu S, Yang L, Wang J, Jiang C. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor. Nanoscale. 2016;8(28):13669–77. https://doi.org/10.1039/c6nr02878k.

  89. Liang L, Su M, Li L, Lan F, Yang G, Ge S, et al. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens Actuators B: Chemical. 2016;229:347–54. https://doi.org/10.1016/j.snb.2016.01.137.

    Article  CAS  Google Scholar 

  90. Lee J-C, Kim W, Choi S. Fabrication of a SERS-encoded microfluidic paper-based analytical chip for the point-of-assay of wastewater. International Journal of Precision Engineering and Manufacturing-Green Technology. 2017;4(2):221–6. https://doi.org/10.1007/s40684-017-0027-9.

    Article  Google Scholar 

  91. Zhu J, Chen Q, Kutsanedzie FYH, Yang M, Ouyang Q, Jiang H. Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal Methods. 2017;9(43):6186–93. https://doi.org/10.1039/c7ay01637a.

    Article  CAS  Google Scholar 

  92. Lim WY, Goh C-H, Thevarajah TM, Goh BT, Khor SM. Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens Bioelectron. 2020;147:111792. https://doi.org/10.1016/j.bios.2019.111792.

    Article  CAS  PubMed  Google Scholar 

  93. Azizov S, Sharipov M, Lim J-M, Tawfik SM, Kattaev N, Lee Y-I. Solvent-resistant microfluidic paper-based analytical device/spray mass spectrometry for quantitative analysis of C18 -ceramide biomarker. J Mass Spectrom. 2020:e4611. https://doi.org/10.1002/jms.4611.

  94. Fratzl M, Chang BS, Oyola-Reynoso S, Blaire G, Delshadi S, Devillers T, et al. Magnetic two-way valves for paper-based capillary-driven microfluidic devices. ACS Omega. 2018;3(2):2049–57. https://doi.org/10.1021/acsomega.7b01839.

  95. Michael I, Kim D, Gulenko O, Kumar S, Kumar S, Clara J, et al. A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nature Biomedical Engineering. 2020;4(6):591–600. https://doi.org/10.1038/s41551-020-0557-2.

  96. He Y, Gao Q, Wu W-B, Nie J, Fu J-Z. 3D printed paper-based microfluidic analytical devices. Micromachines. 2016;7(7):108. https://doi.org/10.3390/mi7070108.

  97. Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, De Orbe-Payá I, Rodríguez-Diéguez A et al. Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchimica Acta. 2018;185(1). https://doi.org/10.1007/s00604-017-2575-7.

  98. Da Silva GO, De Araujo WR, Paixão TRLC. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples. Talanta. 2018;176:674–8. https://doi.org/10.1016/j.talanta.2017.08.082.

  99. Petruci JFDS, Hauser PC, Cardoso AA. Colorimetric paper-based device for gaseous hydrogen cyanide quantification based on absorbance measurements. Sens Actuators B: Chemical. 2018;268:392–7. https://doi.org/10.1016/j.snb.2018.04.101.

  100. Sun X, Jian Y, Wang H, Ge S, Yan M, Yu J. Ultrasensitive microfluidic paper-based electrochemical biosensor based on molecularly imprinted film and boronate affinity sandwich assay for glycoprotein detection. ACS Appl Mater Interfaces. 2019;11(17):16198–206. https://doi.org/10.1021/acsami.9b02005.

  101. Ruecha N, Shin K, Chailapakul O, Rodthongkum N. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens Actuators B: Chemical. 2019;279:298–304. https://doi.org/10.1016/j.snb.2018.10.024.

  102. Wang F, Fu C, Huang C, Li N, Wang Y, Ge S, et al. Paper-based closed Au-bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosens Bioelectron. 2020;150:111917. https://doi.org/10.1016/j.bios.2019.111917.

  103. Cai X, Zhang H, Yu X, Wang W. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells. Talanta. 2020;216:120996. https://doi.org/10.1016/j.talanta.2020.120996.

  104. Tian T, Li L, Zhang Y, Liu H, Zhang L, Yan M, et al. Dual-mode fluorescence biosensor platform based on T-shaped duplex structure for detection of microRNA and folate receptor. Sens Actuators B: Chemical. 2018;261:44–50. https://doi.org/10.1016/j.snb.2018.01.129.

Download references

Funding

We are grateful for the financial support by the National Key Research and Development Program of China (Grant Nos. 2017FYA0205303 and 2017FYA0205301), the National Natural Science Foundation of China (Grant No. 81672247), Shanghai Science and Technology Fund (No.15DZ225200), and Funding of SJTU (No ZH2018QNA03 and YG2019QNB09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Wang, K., Xu, H. et al. Strategies for the detection of target analytes using microfluidic paper-based analytical devices. Anal Bioanal Chem 413, 2429–2445 (2021). https://doi.org/10.1007/s00216-021-03213-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03213-x

Keywords

Navigation