Skip to main content
Log in

Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Body fluid traces can provide highly valuable clues in forensic investigations. In particular, bloodstains are a common occurrence in criminal investigation, and the discrimination of menstrual and peripheral blood is a crucial step for casework involving rape and sexual assault. Most of the current protocols require the detection of characteristic menstrual blood components using sophisticated procedures that need to be performed in a laboratory. The present study uses attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy as a nondestructive technique for discriminating menstrual and peripheral blood traces. This method incorporates statistical analysis and was evaluated by internal and external validation testing. A partial least squares discriminant analysis (PLSDA) classification model was created for differentiating the two types of blood in a binary manner. Excellent separation between menstrual and peripheral blood samples was achieved during internal validation. External validation resulted in 100% accuracy for predicting a sample as peripheral or menstrual blood. This study demonstrates that ATR FT-IR spectroscopy combined with chemometrics is a reliable approach for rapid and nondestructive discrimination of menstrual and peripheral bloodstains. It offers a significant advantage to forensic science due to the availability of portable instruments and the potential for bloodstain analysis at a crime scene.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188:1–17.

    Article  CAS  PubMed  Google Scholar 

  2. Eckert WG, James SH. Interpretation of bloodstain evidence at crime scenes. 2nd ed. Boca Raton, FL: CRC Press; 1998.

  3. Archambault J, Lonsway KA, O’Donnell P. Understanding the role of DNA evidence in a sexual assault investigation: part 6. Policy responses, assessment, and recommendations for practice. End Violence Against Women International. 1/2014:1–28.

  4. People v. Dalcollo. 669 N.E.2d: Appellate Court, Second District; 1996. p. 378.

  5. State of Louisiana v. Lewis. Court of Appeal, Third Circuit, 04–0020.

  6. Wickenheiser R. Former director of Acadiana Criminalistics Laboratory in New Iberia, Louisiana. Private communication, October 2020.

  7. Payne-James J, Byard RW. Encyclopedia of forensic and legal medicine. 2nd ed. Amsterdam: Academic Press; 2016.

    Google Scholar 

  8. Farage MA, Maibach HI. The vulva: anatomy, physiology, and pathology. New York, NY: Informa Healthcare USA, Inc.; 2006.

  9. Fraser IS, McCarron G, Markham R, Resta T. Blood and total fluid content of menstrual discharge. Obstet Gynecol. 1985;65:194–8.

    CAS  PubMed  Google Scholar 

  10. Huggins GR, Preti G. Vaginal odors and secretions. Clin Obstet Gynecol. 1981;24:355–77.

    Article  CAS  PubMed  Google Scholar 

  11. Grimwade J, Fraser IS, Farrell E. Menstruation. The body of knowledge: everything you need to know about the female cycle. Port Melbourne, Victoria: William Heinemann Australia; 1995. p. 16–43.

  12. Whitehead PH, Divall GB. Assay of “soluble fibrinogen” in bloodstain extracts as an aid to identification of menstrual blood in forensic science: preliminary findings. Clin Chem. 1973;19:762–5.

    Article  CAS  PubMed  Google Scholar 

  13. Whitehead PH, Divall GB. The identification of menstrual blood — the immunoelectrophoretic characterisation of soluble fibrinogen from menstrual bloodstain extracts. Forensic Sci. 1974;4:53–62.

    Article  CAS  PubMed  Google Scholar 

  14. Baker DJ, Grimes EA, Hopwood AJ. D-dimer assays for the identification of menstrual blood. Forensic Sci Int. 2011;212:210–4.

    Article  CAS  PubMed  Google Scholar 

  15. Holtkötter H, Rodrigues Dias Filho C, Schwender K, Stadler C, Vennemann M, Pacheco AC, et al. Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault—validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int J Legal Med. 2018;132:683–90.

    Article  PubMed  Google Scholar 

  16. Hanson EK, Ballantyne J. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis. F1000Res. 2014;2:281.

    Article  PubMed Central  Google Scholar 

  17. Jakubowska J, Maciejewska A, Bielawski KP, Pawłowski R. mRNA heptaplex protocol for distinguishing between menstrual and peripheral blood. Forensic Sci Int Genet. 2014;13:53–60.

    Article  CAS  PubMed  Google Scholar 

  18. Haas C, Hanson E, Anjos MJ, Ballantyne KN, Banemann R, Bhoelai B, et al. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet. 2014;8:203–12.

    Article  CAS  PubMed  Google Scholar 

  19. Bauer M, Patzelt D. Evaluation of mRNA markers for the identification of menstrual blood. J Forensic Sci. 2002;47:1278–82.

    Article  CAS  PubMed  Google Scholar 

  20. Gray D, Frascione N, Daniel B. Development of an immunoassay for the differentiation of menstrual blood from peripheral blood. Forensic Sci Int. 2012;220:12–8.

    Article  CAS  PubMed  Google Scholar 

  21. An JH, Choi A, Shin K-J, Yang WI, Lee HY. DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med. 2013;127:35–43.

    Article  PubMed  Google Scholar 

  22. Hanson EK, Mirza M, Rekab K, Ballantyne J. The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression. Electrophoresis. 2014;35:3087–95.

    Article  CAS  PubMed  Google Scholar 

  23. Muro CK, Lednev IK. Identification of individual red blood cells by Raman microspectroscopy for forensic purposes: in search of a limit of detection. Anal Bioanal Chem. 2017;409:287–93.

    Article  CAS  PubMed  Google Scholar 

  24. Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK. Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem. 2015;87:306–27.

    Article  CAS  PubMed  Google Scholar 

  25. Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward Locard’s exchange principle: recent developments in forensic trace evidence analysis. Anal Chem. 2019;91:637–54.

    Article  CAS  PubMed  Google Scholar 

  26. Bunaciu AA, Fleschin Ş, Hoang VD, Aboul-Enein HY. Vibrational spectroscopy in body fluids analysis. Crit Rev Anal Chem. 2017;47:67–75.

    Article  CAS  PubMed  Google Scholar 

  27. Mistek E, Lednev IK. FT-IR spectroscopy for identification of biological stains for forensic purposes. Spectroscopy. 2018;33:8–19.

    Google Scholar 

  28. Elkins KM. Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy. J Forensic Sci. 2011;56:1580–7.

    Article  CAS  PubMed  Google Scholar 

  29. Orphanou C-M, Walton-Williams L, Mountain H, Cassella J. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int. 2015;252:e10–e6.

    Article  CAS  PubMed  Google Scholar 

  30. Takamura A, Watanabe K, Akutsu T, Ozawa T. Soft and robust identification of body fluid using Fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci Rep. 2018;8:8459.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gregório I, Zapata F, García-Ruiz C. Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR. Talanta. 2017;162:634–40.

    Article  PubMed  Google Scholar 

  32. Takamura A, Watanabe K, Akutsu T, Ikegaya H, Ozawa T. Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection Fourier transform infrared spectroscopy: postmortem or antemortem blood? Anal Chem. 2017;89:9797–804.

    Article  CAS  PubMed  Google Scholar 

  33. Mistek E, Lednev IK. Identification of species’ blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy. Anal Bioanal Chem. 2015;407:7435–42.

    Article  CAS  PubMed  Google Scholar 

  34. Mistek-Morabito E, Lednev IK. Discrimination between human and animal blood by attenuated total reflection Fourier transform-infrared spectroscopy. Commun Chem. 2020;3:178.

    Article  Google Scholar 

  35. Mistek E, Halámková L, Lednev IK. Phenotype profiling for forensic purposes: nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains. Forensic Chem. 2019;16:100176.

    Article  CAS  Google Scholar 

  36. Takamura A, Halamkova L, Ozawa T, Lednev IK. Phenotype profiling for forensic purposes: determining donor sex based on Fourier transform infrared spectroscopy of urine traces. Anal Chem. 2019;91:6288–95.

    Article  CAS  PubMed  Google Scholar 

  37. Quinn AA, Elkins KM. The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT-IR spectroscopy. J Forensic Sci. 2017;62:197–204.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma S, Chophi R, Singh R. Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Int J Legal Med. 2020;134:63–77.

    Article  PubMed  Google Scholar 

  39. Sikirzhytskaya A, Sikirzhytski V, Lednev IK. Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood. J Biophotonics. 2014;7:59–67.

    Article  CAS  PubMed  Google Scholar 

  40. Muro CK, Doty KC, de Souza Fernandes L, Lednev IK. Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem. 2016;1:31–8.

    Article  CAS  Google Scholar 

  41. Vyas B, Halámková L, Lednev IK. A universal test for the forensic identification of all main body fluids including urine. Forensic Chem. 2020;20:100247.

    Article  CAS  Google Scholar 

  42. Varmuza K, Filzmoser P. Introduction to multivariate statistical analysis in chemometrics. Boca Raton, FL: CRC Press; 2009.

  43. Staniszewska E, Malek K, Baranska M. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim Acta A. 2014;118:981–6.

    Article  CAS  Google Scholar 

  44. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rinnan Å, van den Berg F, Engelsen SB. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal Chem. 2009;28:1201–22.

    Article  CAS  Google Scholar 

  46. Engel J, Gerretzen J, Szymańska E, Jansen JJ, Downey G, Blanchet L, et al. Breaking with trends in pre-processing? TrAC Trends Anal Chem. 2013;50:96–106.

    Article  CAS  Google Scholar 

  47. Wise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS. PLS_Toolbox 3.5 for use with MATLAB. Wenatchee, WA: Eigenvector Research, Inc.; 2005.

  48. Westad F, Marini F. Validation of chemometric models – a tutorial. Anal Chim Acta. 2015;893:14–24.

    Article  CAS  PubMed  Google Scholar 

  49. Jung JY, Lee H-S, Kang D-G, Kim NS, Cha MH, Bang O-S, et al. 1H-NMR-based metabolomics study of cerebral infarction. Stroke. 2011;42:1282–8.

    Article  CAS  PubMed  Google Scholar 

  50. Morse-McNabb E, Sheffield K, Clark R, Robson S, Lewis H. Calibration and validation of state wide land cover mapping. GSR_2. 2012.

  51. Wise BM, Martens H, Høy M, Bro R, Brockhoff PB. Calibration transfer by generalized least squares. Seventh Scandinavian Symposium on Chemometrics (SSC7), Copenhagen, Denmark. 2001.

  52. Olsztyńska-Janus S, Szymborska-Małek K, Gąsior-Głogowska M, Walski T, Komorowska M, Witkiewicz W, et al. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. Acta Bioeng Biomech. 2012;14:101–15.

    PubMed  Google Scholar 

  53. Kanagathara N, Thirunavukkarasu M, Esther Jeyanthi C, Shenbagarajan P. FTIR and UV-visible spectral study on normal blood samples. Int J Pharm Bio Sci. 2011;1:74–81.

    CAS  Google Scholar 

  54. Chiriboga L, Xie P, Yee H, Vigorita V, Zarou D, Zakim D, et al. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy. 1998;4:47–53.

    Article  CAS  PubMed  Google Scholar 

  55. Wong PT, Wong RK, Caputo TA, Godwin TA, Rigas B. Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. Proc Natl Acad Sci USA. 1991;88:10988–92.

  56. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664–87.

    Article  CAS  PubMed  Google Scholar 

  57. McLaughlin G, Fikiet MA, Ando M, Hamaguchi H-o, Lednev IK. Universal detection of body fluid traces in situ with Raman hyperspectroscopy for forensic purposes: evaluation of a new detection algorithm (HAMAND) using semen samples. J Raman Spectrosc. 2019;50:1147–53.

  58. Rein AJ, Seelenbinder J. Handheld and portable FTIR spectrometers for the analysis of materials: taking the lab to the sample. Am Lab. 2013.

  59. Fujihara J, Fujita Y, Yamamoto T, Nishimoto N, Kimura-Kataoka K, Kurata S, et al. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy. Int J Legal Med. 2017;131:319–22.

    Article  CAS  PubMed  Google Scholar 

  60. Morillas AV, Gooch J, Frascione N. Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta. 2018;184:1–6.

    Article  CAS  PubMed  Google Scholar 

  61. Pereira JFQ, Silva CS, Vieira MJL, Pimentel MF, Braz A, Honorato RS. Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem J. 2017;133:561–6.

    Article  CAS  Google Scholar 

  62. Doty KC, McLaughlin G, Lednev IK. A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem. 2016;408:3993–4001.

    Article  CAS  PubMed  Google Scholar 

  63. Doty KC, Muro CK, Lednev IK. Predicting the time of the crime: bloodstain aging estimation for up to two years. Forensic Chem. 2017;5:1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all volunteers who donated their blood for use in this study. I.K.L. also acknowledges the Government of the Russian Federation for supporting scientific research projects implemented under the supervision of leading scientists at Russian institutions of higher education (proposal no. №2020-220-08-2389).

Funding

This project was supported by Awards No. 2017-R2-CX-0006 and 2017-DN-BX-0135, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor K. Lednev.

Ethics declarations

The authors declare no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University at Albany’s Institutional Research Board (IRB). The study was approved by the University at Albany’s IRB (Study No. 18E091).

Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the U.S. Department of Justice.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistek-Morabito, E., Lednev, I.K. Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes. Anal Bioanal Chem 413, 2513–2522 (2021). https://doi.org/10.1007/s00216-021-03206-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03206-w

Keywords

Navigation