Skip to main content
Log in

A strategy combining solid-phase extraction, multiple mass defect filtering and molecular networking for rapid structural classification and annotation of natural products: characterization of chemical diversity in Citrus aurantium as a case study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Medicinal plants are complex chemical systems containing thousands of secondary metabolites. The rapid classification and characterization of the components in medicinal plants using mass spectrometry (MS) remains an immense challenge. Herein, a novel strategy is presented for MS through the combination of solid-phase extraction (SPE), multiple mass defect filtering (MMDF) and molecular networking (MN). This strategy enables efficient classification and annotation of natural products. When combined with SPE and MMDF, the improved analytical method of MN can perform the rapid annotation of diverse natural products in Citrus aurantium according to the tandem mass spectrometry (MS/MS) fragments. In MN, MS2LDA can be initially applied to recognize substructures of natural products, according to the common fragmentation patterns and neutral losses in multiple MS/MS spectra. MolNetEnhancer was adopted here to obtain chemical classifications provided by ClassyFire. The results suggest that the integrated SPE-MMDF-MN method was capable of rapidly annotating a greater number of natural products from Citrus aurantium than the classical MN strategy alone. Moreover, SPE and MMDF enhanced the effectiveness of MN for annotating, classifying and distinguishing different types of natural products. Our workflow provides the foundation for the automated, high-throughput structural classification and annotation of secondary metabolites with various chemical structures. The developed approach can be widely applied in the analysis of constituents in natural products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodier J. Handbook of pharmaceutical natural products. Ref Rev. 2010;25(3):42–3.

    Google Scholar 

  2. Månsson M, Phipps RK, Gram L, Munro MHG, Larsen TO, Nielsen KF. Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification. J Nat Prod. 2010;73(6):1126–32. https://doi.org/10.1021/np100151y.

    Article  CAS  PubMed  Google Scholar 

  3. Allard P-M, Péresse T, Bisson J, Gindro K, Marcourt L, Pham VC, et al. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem. 2016;88(6):3317–23. https://doi.org/10.1021/acs.analchem.5b04804.

    Article  CAS  PubMed  Google Scholar 

  4. Shi Y, Zhan H, Zhong L, Yan F, Feng F, Liu W, et al. Total ion chromatographic fingerprints combined with chemometrics and mass defect filter to predict antitumor components of Picrasma quassioids. J Sep Sci. 2016;39(13):2633–41. https://doi.org/10.1002/jssc.201501410.

    Article  CAS  PubMed  Google Scholar 

  5. Shang Z, Cai W, Cao Y, Wang F, Wang Z, Lu J, et al. An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery. J Pharm Biomed Anal. 2017;146:387. https://doi.org/10.1016/j.jpba.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  6. Xing J, Zang M, Liu H. The application of a novel high-resolution mass spectrometry-based analytical strategy to rapid metabolite profiling of a dual drug combination in humans. Anal Chim Acta. 2017;993:38–46. https://doi.org/10.1016/j.aca.2017.08.047.

    Article  CAS  PubMed  Google Scholar 

  7. Gu Z-M, Wang L-Q, Wu J. Mass defect filter - a new tool to expedite screening and dereplication of natural products and generate natural product profiles. Nat Products J. 2011;1(2):135–45. https://doi.org/10.2174/2210315511101020135.

    Article  CAS  Google Scholar 

  8. Wang M, Carver JJ, Phelan VV, Sanchez LM, Bandeira N. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34(8):828–37. https://doi.org/10.1038/nbt.3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A. 2012;109(26):E1743–E52. https://doi.org/10.1073/pnas.1203689109.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hautbergue T, Jamin EL, Costantino R, Tadrist S, Meneghetti L, Tabet J-C, et al. Combination of isotope labeling and molecular networking of tandem mass spectrometry data to reveal 69 unknown metabolites produced by Penicillium nordicum. Anal Chem. 2019;91(19):12191–202. https://doi.org/10.1021/acs.analchem.9b01634.

    Article  CAS  PubMed  Google Scholar 

  11. Nothias L-F, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod. 2018;81(4):758–67. https://doi.org/10.1021/acs.jnatprod.7b00737.

    Article  CAS  PubMed  Google Scholar 

  12. Reher R, Kuschak M, Heycke N, Annala S, Kehraus S, Dai H-F, et al. Applying molecular networking for the detection of natural sources and analogues of the selective Gq protein inhibitor FR900359. J Nat Prod. 2018;81(7):1628–35. https://doi.org/10.1021/acs.jnatprod.8b00222.

    Article  CAS  PubMed  Google Scholar 

  13. Ridder L, van der Hooft JJJ, Verhoeven S, de Vos RCH, Vervoort J, Bino RJ. In silico prediction and automatic LC–MSn annotation of green tea metabolites in urine. Anal Chem. 2014;86(10):4767–74. https://doi.org/10.1021/ac403875b.

    Article  CAS  PubMed  Google Scholar 

  14. Yu JS, Seo H, Kim GB, Hong J, Yoo HH. MS-based molecular networking of designer drugs as an approach for the detection of unknown derivatives for forensic and doping applications: a case of NBOMe derivatives. Anal Chem. 2019;91(9):5483–8. https://doi.org/10.1021/acs.analchem.9b00294.

    Article  CAS  PubMed  Google Scholar 

  15. Melnik AV, da Silva RR, Hyde ER, Aksenov AA, Vargas F, Bouslimani A, et al. Coupling targeted and untargeted mass spectrometry for metabolome-microbiome-wide association studies of human fecal samples. Anal Chem. 2017;89(14):7549–59. https://doi.org/10.1021/acs.analchem.7b01381.

    Article  CAS  PubMed  Google Scholar 

  16. Quinn RA, Nothias LF, Vining O, Meehan M, Esquenazi E, Dorrestein PC. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci. 2017;38(2):143–54. https://doi.org/10.1016/j.tips.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  17. Ernst M, Kang KB, Caraballo Rodríguez A, Nothias L-F, Wandy J, Wang M, et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites. 2019;9(7):144. https://doi.org/10.3390/metabo9070144.

    Article  CAS  PubMed Central  Google Scholar 

  18. Zhang H, Zhang D, Ray K, Zhu M. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom. 2009;44(7):999–1016. https://doi.org/10.1002/jms.1610.

    Article  CAS  PubMed  Google Scholar 

  19. Wandy J, Zhu Y, van der Hooft JJJ, Daly R, Barrett MP, Rogers S. Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics (Oxford, England). 2018;34(2):317–8. https://doi.org/10.1093/bioinformatics/btx582.

    Article  CAS  Google Scholar 

  20. Nothias-Esposito M, Nothias LF, Da Silva RR, Retailleau P, Zhang Z, Leyssen P, et al. Investigation of premyrsinane and myrsinane esters in euphorbia cupanii and euphobia pithyusa with MS2LDA and combinatorial molecular network annotation propagation. J Nat Prod. 2019;82(6):1459–70. https://doi.org/10.1021/acs.jnatprod.8b00916.

    Article  CAS  PubMed  Google Scholar 

  21. Pilon AC, Gu H, Raftery D, Bolzani VDS, Lopes NP, Castro-Gamboa I, et al. Mass spectral similarity networking and gas-phase fragmentation reactions in the structural analysis of flavonoid glycoconjugates. Anal Chem. 2019;91(16):10413–23. https://doi.org/10.1021/acs.analchem.8b05479.

    Article  CAS  PubMed  Google Scholar 

  22. Fox Ramos AE, Pavesi C, Litaudon M, Dumontet V, Poupon E, Champy P, et al. CANPA: computer-assisted natural products anticipation. Anal Chem. 2019;91(17):11247–52. https://doi.org/10.1021/acs.analchem.9b02216.

    Article  CAS  PubMed  Google Scholar 

  23. da Silva RR, Dorrestein PC, Quinn RA. Illuminating the dark matter in metabolomics. Proc Natl Acad Sci U S A. 2015;112(41):12549–50. https://doi.org/10.1073/pnas.1516878112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aron A, Gentry E, McPhail K, Nothias L-F, Esposito M, Bouslimani A, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15(6):1954–91. https://doi.org/10.1038/s41596-020-0317-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFC1700906, 2017YFC1702900) and the Double Thousand Program of Jiangxi Province (jxsq2018102022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.53 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YK., Xiao, XR., Zhou, ZM. et al. A strategy combining solid-phase extraction, multiple mass defect filtering and molecular networking for rapid structural classification and annotation of natural products: characterization of chemical diversity in Citrus aurantium as a case study. Anal Bioanal Chem 413, 2879–2891 (2021). https://doi.org/10.1007/s00216-021-03201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03201-1

Keywords

Navigation