Skip to main content
Log in

Selective optosensing of iron(III) ions in HeLa cells using NaYF4:Yb3+/Tm3+ upconversion nanoparticles coated with polyepinephrine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel polyepinephrine-modified NaYF4:Yb,Tm upconversion luminescent nanoparticles (UCNP@PEP) were prepared via the self-polymerization of epinephrine on the surfaces of the UCNPs for selective sensing of Fe3+ inside a cell and for intracellular imaging. The proposed UCNP@PEP probe is a strong blue light emitter (λmax = 474 nm) upon exposure to an excitation wavelength of 980 nm. The probe was used for detecting Fe3+ owing to the complexation reaction between UCNP@PEP and Fe3+, resulting in reduced upconversion luminescence (UCL) intensity. The proposed probe has a detection limit of 0.2 μM and a good linear range of 1–10 μM for sensing Fe3+ ions. Moreover, the UCNP@PEP probe displays high cell viability (90%) and is feasible for intracellular imaging. The ability of the probe to sense Fe3+ in a human serum sample was tested and shows promising output for diagnostic purposes. The prepared UCNP@PEP probe was characterized by using UV-visible (UV-Vis) absorption spectrometry, fluorescence (FL) spectrometry, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng M, Tan H, Xie Z, Zhang L, Jing X, Sun Z. Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe3+. ACS Appl Mater Interfaces. 2013;5(3):1078–83. https://doi.org/10.1021/am302862k.

    Article  CAS  PubMed  Google Scholar 

  2. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–73. https://doi.org/10.1038/nrn1537.

    Article  CAS  PubMed  Google Scholar 

  3. Shuhua Li Jia Zhu LF, Xiaohong Li YL. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem. 2014;86(20):10201–7. https://doi.org/10.1021/ac503183y.

    Article  CAS  Google Scholar 

  4. Ariga T, Imura Y, Suzuki M, Yoshimura E. Determination of ferric iron chelators by high-performance liquid chromatography using luminol chemiluminescence detection. J Chromatogr B. 2016;1014:75–82. https://doi.org/10.1016/j.jchromb.2016.01.048.

    Article  CAS  Google Scholar 

  5. Akter KF, Chen Z, Smith L, Davey D, Naidu R. Speciation of arsenic in ground water samples: a comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta. 2005;68:406–15. https://doi.org/10.1016/j.talanta.2005.09.011.

    Article  CAS  Google Scholar 

  6. Ghaedi M, Shokrollahi A, Kianfar AH, Mirsadeghi AS, Pourfarokhi A, Soylak M. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their. J Hazard Mater. 2008;154(1):128–34. https://doi.org/10.1016/j.jhazmat.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  7. Huy BT, Kim Phuong NT, Nguyen T-TT, Lee Y-I. Photoluminescence spectroscopy of cd-based quantum dots for optosensing biochemical molecules. Appl Spectrosc Rev. 2017:1–20. https://doi.org/10.1080/05704928.2017.1309424.

  8. Heilemann M, Van De Linde S, Mukherjee A, Sauer M. Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed. 2009;48(37):6903–8. https://doi.org/10.1002/anie.200902073.

    Article  CAS  Google Scholar 

  9. Wang R, Yu F, Liu P, Chen L. A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells. Chem Commun. 2012;48(43):5310–2. https://doi.org/10.1039/C2CC31426F.

    Article  CAS  Google Scholar 

  10. Nandre J, Patil S, Patil V, Yu F, Chen L, Sahoo S, et al. A novel fluorescent “turn-on” chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging. Biosens Bioelectron. 2014;61:612–7. https://doi.org/10.1016/j.bios.2014.06.017.

    Article  CAS  PubMed  Google Scholar 

  11. Yang S-T, Wang X, Wang H, Lu F, Luo PG, Cao L, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C. 2009;113(42):18110–4. https://doi.org/10.1021/jp9085969.

    Article  CAS  Google Scholar 

  12. Huy BT, Nghia NN, Lee Y-I. Highly sensitive colorimetric paper-based analytical device for the determination of tetracycline using green fluorescent carbon nitride nanoparticles. Microchem J. 2020;158:105151. https://doi.org/10.1016/j.microc.2020.105151.

    Article  CAS  Google Scholar 

  13. Huang Y, He N, Kang Q, Shen D, Wang X, Wang Y, et al. A carbon dot-based fluorescent nanoprobe for the associated detection of iron ions and the determination of the fluctuation of ascorbic acid induced by hypoxia in cells and in vivo. Analyst. 2019;144(22):6609–16. https://doi.org/10.1039/C9AN01694E.

    Article  CAS  PubMed  Google Scholar 

  14. Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6(4):401–18. https://doi.org/10.1016/j.nantod.2011.06.004.

    Article  CAS  Google Scholar 

  15. Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol. 2001;2:261–76. https://doi.org/10.1002/1438-5171(200112)2:4<261::AID-SIMO261>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  16. Zhang M, Gong L, Sun C, Li W, Chang Z, Qi D. A new fluorescent-colorimetric chemosensor based on a Schiff base for detecting Cr3+, Cu2+, Fe3+ and Al3+ ions. Spectrochim Acta A Mol Biomol Spectrosc. 2019;214:7–13. https://doi.org/10.1016/j.saa.2019.01.089.

    Article  CAS  PubMed  Google Scholar 

  17. Qi H, Teng M, Liu M, Liu S, Li J, Yu H, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci. 2019;539:332–41. https://doi.org/10.1016/j.jcis.2018.12.047.

    Article  CAS  PubMed  Google Scholar 

  18. Dwivedi SK, Gupta RC, Ali R, Razi SS, Hira SK, Manna PP, et al. Smart PET based organic scaffold exhibiting bright “turn–on” green fluorescence to detect Fe3+ ion: live cell imaging and logic implication. J Photochem Photobiol A Chem. 2018;358:157–66. https://doi.org/10.1016/j.jphotochem.2018.03.011.

    Article  CAS  Google Scholar 

  19. Gao ZF, Li TT, Xu XL, Liu YY, Luo HQ, Li NB. Green light-emitting polyepinephrine-based fluorescent organic dots and its application in intracellular metal ions sensing. Biosens Bioelectron. 2016;83:134–41. https://doi.org/10.1016/j.bios.2016.04.041.

    Article  CAS  PubMed  Google Scholar 

  20. Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl Mater Interfaces. 2014;6(7):5152–60. https://doi.org/10.1021/am500411m.

    Article  CAS  PubMed  Google Scholar 

  21. Jung D, Gerelkhuu Z, Huy BT, Lee Y-I. Fluorescence optosensing of triclosan by upconversion nanoparticles with potassium permanganate. ACS Omega. 2019;4(5):7931–7. https://doi.org/10.1021/acsomega.8b03680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung JW, Gerelkhuu Z, Oh JH, Lee Y-I. Recent advances in luminescence properties of lanthanide-doped up-conversion nanocrystals and applications for bio-imaging, drug delivery, and optosensing. Appl Spectrosc Rev. 2016;51(7–9):678–705. https://doi.org/10.1080/05704928.2016.1167070.

    Article  CAS  Google Scholar 

  23. Gerelkhuu Z, Jung D, The Huy B, Tawfik SM, Conte ML, Conte ED, et al. Highly selective and sensitive detection of catecholamines using NaLuGdF4:Yb3+/Er3+ upconversion nanoparticles decorated with metal ions. Sensors Actuators B Chem. 2019;284:172–8. https://doi.org/10.1016/j.snb.2018.12.135.

    Article  CAS  Google Scholar 

  24. Zayakhuu G, Huy BT, Chung JW, Lee Y-I. Selective detection of Hg2+ ion using upconversion luminescent nanoparticles. Bull Kor Chem Soc. 2015;36(5):1307–8. https://doi.org/10.1002/bkcs.10254.

    Article  CAS  Google Scholar 

  25. Gerelkhuu Z, Huy BT, Sharipov M, Jung D, Phan T-L, Conte ED, et al. One-step synthesis of NaLu80−xGdxF4:Yb183+/Er23+(Tm3+) upconversion nanoparticles for in vitro cell imaging. Mater Sci Eng C. 2018;86:56–61. https://doi.org/10.1016/j.msec.2017.11.019.

    Article  CAS  Google Scholar 

  26. Li Z, Lv S, Wang Y, Chen S, Liu Z. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J Am Chem Soc. 2015;137(9):3421–7. https://doi.org/10.1021/jacs.5b01504.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Peng J, Sun L, Li F. High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano. 2011;5(10):8040–8. https://doi.org/10.1021/nn202620u.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Li B, Zhang L, Jiang H. An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem Commun (Camb). 2012;48(40):4860–2. https://doi.org/10.1039/c2cc31642k.

    Article  CAS  Google Scholar 

  29. Ding Y, Zhu H, Zhang X, Zhu J-J, Burda C. Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem Commun. 2013;49(71):7797–9. https://doi.org/10.1039/C3CC43926G.

    Article  CAS  Google Scholar 

  30. Wei R, Wei Z, Sun L, Zhang JZ, Liu J, Ge X, et al. Nile red derivative-modified nanostructure for upconversion luminescence sensing and intracellular detection of Fe3+ and MR imaging. ACS Appl Mater Interfaces. 2016;8(1):400–10. https://doi.org/10.1021/acsami.5b09132.

    Article  CAS  PubMed  Google Scholar 

  31. Meng Z, Wu S, Zhong L, Sun X, Li L, Zhang S. Fe3+-sensing by 3,3′,5,5′-tetramethylbenzidine-functionalized upconversion nanoparticles. Nanotechnology. 2019;30(13):135502. https://doi.org/10.1088/1361-6528/aafa34.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao M, Xu F, Wang L, Chen H. A single-particle enumeration method for the detection of Fe2+ based on a near-infrared core–shell upconversion nanoparticle and IR-808 dye composite nanoprobe. Analyst. 2020;145(2):530–6. https://doi.org/10.1039/C9AN02007A.

    Article  CAS  PubMed  Google Scholar 

  33. Ozhukil Kollath V, Derakhshandeh M, Mayer FD, Mudigonda T, Islam MN, Trifkovic M, et al. Fluorescent polycatecholamine nanostructures as a versatile probe for multiphase systems. RSC Adv. 2018;8(56):31967–71. https://doi.org/10.1039/C8RA05372C.

    Article  CAS  Google Scholar 

  34. Bishnoi S, Milton MD. Selective and sensitive novel benzimidazolium-based fluorescent probes for micromolar detection of Fe3+ ions in pure aqueous media. J Photochem Photobiol A Chem. 2017;335:52–8. https://doi.org/10.1016/j.jphotochem.2016.11.010.

    Article  CAS  Google Scholar 

  35. Zhao L, Xin X, Ding P, Song A, Xie Z, Shen J, et al. Fluorescent oligomer as a chemosensor for the label-free detection of Fe3+ and dopamine with selectivity and sensitivity. Anal Chim Acta. 2016;926:99–106. https://doi.org/10.1016/j.aca.2016.04.038.

    Article  CAS  PubMed  Google Scholar 

  36. Şenol AM, Onganer Y, Meral K. An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sensors Actuators B Chem. 2017;239:343–51. https://doi.org/10.1016/j.snb.2016.08.025.

    Article  CAS  Google Scholar 

  37. Xuan W, Ruiyi L, Saiying F, Zaijun L, Guangli W, Zhiguo G, et al. D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids. Sensors Actuators B Chem. 2017;243:211–20. https://doi.org/10.1016/j.snb.2016.11.150.

    Article  CAS  Google Scholar 

  38. Edison TNJI, Atchudan R, Shim J-J, Kalimuthu S, Ahn B-C, Lee YR. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J Photochem Photobiol B Biol. 2016;158:235–42. https://doi.org/10.1016/j.jphotobiol.2016.03.010.

    Article  CAS  Google Scholar 

  39. Hu Y, Zhao F, Hu S, Dong Y, Li D, Su Z. A novel turn-on colorimetric and fluorescent sensor for Fe3+ and its application in living cells. J Photochem Photobiol A Chem. 2017;332:351–6. https://doi.org/10.1016/j.jphotochem.2016.09.006.

    Article  CAS  Google Scholar 

  40. Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem. 2014;86(20):10201–7. https://doi.org/10.1021/ac503183y.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem. 2014;86(19):9846–52. https://doi.org/10.1021/ac502446m.

    Article  CAS  PubMed  Google Scholar 

  42. Qu K, Wang J, Ren J, Qu X. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem Eur J. 2013;19(22):7243–9. https://doi.org/10.1002/chem.201300042.

    Article  CAS  PubMed  Google Scholar 

  43. Gerelkhuu Z, Huy BT, Chung JW, Phan T-L, Conte E, Lee Y-I. Influence of Cr3+ on upconversion luminescent and magnetic properties of NaLu0.86-xGd0.12F4:Crx3+/Er0.023+ (0≤x≤0.24) material. J Lumin. 2017;187:40–5. https://doi.org/10.1016/j.jlumin.2017.02.038.

    Article  CAS  Google Scholar 

  44. Fan W, Bai H, Shi W. Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting. CrystEngComm. 2014;16(15):3059. https://doi.org/10.1039/c3ce42337a.

    Article  CAS  Google Scholar 

  45. Zhang F, Zhang C-L, Peng H-Y, Cong H-P, Qian H-S. Near-infrared photocatalytic upconversion nanoparticles/TiO2 nanofibers assembled in large scale by electrospinning. Part Part Syst Charact. 2016;33(5):248–53. https://doi.org/10.1002/ppsc.201600010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A3A04036531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ill Lee.

Ethics declarations

No violation of human or animal rights occurred during this investigation. Consent to submit has been received from all co-authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerelkhuu, Z., Huy, B.T., Jung, D. et al. Selective optosensing of iron(III) ions in HeLa cells using NaYF4:Yb3+/Tm3+ upconversion nanoparticles coated with polyepinephrine. Anal Bioanal Chem 413, 1363–1371 (2021). https://doi.org/10.1007/s00216-020-03099-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03099-1

Keywords

Navigation