Skip to main content
Log in

Biolayer interferometry provides a robust method for detecting DNA binding small molecules in microbial extracts

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

DNA replication is an exceptional point of therapeutic intervention for many cancer types and several small molecules targeting DNA have been developed into clinically used antitumor agents. Many of these molecules are naturally occurring metabolites from plants and microorganisms, such as the widely used chemotherapeutic doxorubicin. While natural product sources contain a vast number of DNA binding small molecules, isolating and identifying these molecules is challenging. Typical screening campaigns utilize time-consuming bioactivity-guided fractionation approaches, which use sequential rounds of cell-based assays to guide the isolation of active compounds. In this study, we explore the use of biolayer interferometry (BLI) as a tool for rapidly screening natural product sources for DNA targeting small molecules. We first verified that BLI robustly detected DNA binding using designed GC- and AT-rich DNA oligonucleotides with known DNA intercalating, groove binding, and covalent binding agents including actinomycin D (1), doxorubicin (2), ethidium bromide (3), propidium iodide (4), Hoechst 33342 (5), and netropsin (6). Although binding varied with the properties of the oligonucleotides, measured binding affinities agreed with previously reported values. We next utilized BLI to screen over 100 bacterial extracts from our microbial library for DNA binding activity and found three highly active extracts. Binding-guided isolation was used to isolate the active principle component from each extract, which were identified as echinomycin (8), actinomycin V (9), and chartreusin (10). This biosensor-based DNA binding screen is a novel, low-cost, easy to use, and sensitive approach for medium-throughput screening of complex chemical libraries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu W, Wang Y, Li K, Gao J, Huang C-H, Chen C-C, et al. Antibacterial drug leads: DNA and enzyme multitargeting. J Med Chem. 2015;58(3):1215–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bottini A, De SK, Wu B, Tang C, Varani G, Pellecchia M. Targeting influenza a virus RNA promoter. Chem Biol Drug Des. 2015;86(4):663–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang M, Yu Y, Liang C, Lu A, Zhang G. Recent advances in developing small molecules targeting nucleic acid. Int J Mol Sci. 2016;17(6):779–803.

    PubMed Central  Google Scholar 

  4. Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem. 2018;14:1051–86. https://doi.org/10.3762/bjoc.14.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648–59.

    CAS  PubMed  Google Scholar 

  6. Müller S. DNA damage-inducing compounds: unraveling their pleiotropic effects using high throughput sequencing. Curr Med Chem. 2017;24(15):1558–85.

    PubMed  Google Scholar 

  7. Brockmann H, Bauer K. Naturwissenschaften. 1950;37:492–493. http://link.springer.com/article/10.1007/BF00623151

  8. Williamá Lown J. Discovery and development of anthracycline antitumour antibiotics. Chem Soc Rev. 1993;22(3):165–76.

    Google Scholar 

  9. Rescifina A, Zagni C, Varrica MG, Pistarà V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem. 2014;74:95–115.

    CAS  PubMed  Google Scholar 

  10. Lipshultz SE, Herman EH. Anthracycline cardiotoxicity: the importance of horizontally integrating pre-clinical and clinical research. Cardiovasc Res. 2018;114:205–9.

    CAS  PubMed  Google Scholar 

  11. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Statistics. cancer.gov: National Cancer Institute 2018 Contract No.: December 2018.

  13. Blum JL, Flynn PJ, Yothers G, Asmar L, Geyer CE Jr, Jacobs SA, et al. Anthracyclines in early breast cancer: the ABC trials—USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 2017;35(23):2647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bozko M, Bozko A, Scholta T, Malek NP, Bozko P. DNA damage as a strategy for anticancer chemotherapy. Curr Med Chem. 2017;24(15):1487.

    CAS  PubMed  Google Scholar 

  15. Chaires JB. A thermodynamic signature for drug–DNA binding mode. Arch Biochem Biophys. 2006;453(1):26–31.

    CAS  PubMed  Google Scholar 

  16. Rosu F, Gabelica V, Houssier C, De Pauw E. Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic Acids Res. 2002;30(16):e82.

    PubMed  PubMed Central  Google Scholar 

  17. Cummins LL, Chen S, Blyn LB, Sannes-Lowery KA, Drader JJ, Griffey RH, et al. Multitarget affinity/specificity screening of natural products: finding and characterizing high-affinity ligands from complex mixtures by using high-performance mass spectrometry. J Nat Prod. 2003;66(9):1186–90.

    CAS  PubMed  Google Scholar 

  18. Mazzitelli CL, Chu Y, Reczek JJ, Iverson BL, Brodbelt JS. Screening of threading bis-intercalators binding to duplex DNA by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom. 2007;18(2):311–21.

    CAS  PubMed  Google Scholar 

  19. Geierstanger BH, Jacobsen JP, Mrksich M, Dervan PB, Wemmer DE. Structural and dynamic characterization of the heterodimeric and homodimeric complexes of distamycin and 1-methylimidazole-2-carboxamide-netropsin bound to the minor groove of DNA. Biochemistry. 1994;33(10):3055–62.

    CAS  PubMed  Google Scholar 

  20. Ren J, Jenkins TC, Chaires JB. Energetics of DNA intercalation reactions. Biochemistry. 2000;39(29):8439–47.

    CAS  PubMed  Google Scholar 

  21. Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B. 2013;124:1–19.

    CAS  PubMed  Google Scholar 

  22. Pasternack RF, Bustamante C, Collings PJ, Giannetto A, Gibbs EJ. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc. 1993;115(13):5393–9.

    CAS  Google Scholar 

  23. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP. A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J Am Chem Soc. 2001;123(25):5878–91.

    CAS  PubMed  Google Scholar 

  24. Nowicka AM, Zabost E, Donten M, Mazerska Z, Stojek Z. Electroanalytical and spectroscopic procedures for examination of interactions between double stranded DNA and intercalating drugs. Anal Bioanal Chem. 2007;389(6):1931–40.

    CAS  PubMed  Google Scholar 

  25. Nguyen B, Tanious FA, Wilson WD. Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods. 2007;42(2):150–61.

    CAS  PubMed  Google Scholar 

  26. Chaires JB. Drug—DNA interactions. Curr Opin Struct Biol. 1998;8(3):314–20.

    CAS  PubMed  Google Scholar 

  27. Sultana A, Lee JE. Measuring protein-protein and protein-nucleic acid interactions by Biolayer Interferometry. Curr Protoc Protein Sci. 2015;79(1):1–26.

    Google Scholar 

  28. Palchaudhuri R, Hergenrother PJ. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol. 2007;18(6):497–503.

    CAS  PubMed  Google Scholar 

  29. Cao Y, Li Y-h, Lv D-y, Chen X-f, Chen L-d, Zhu Z-y, et al. Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC-MS. Anal Bioanal Chem. 2016;408(19):5359–67.

    CAS  PubMed  Google Scholar 

  30. Wartchow CA, Podlaski F, Li S, Rowan K, Zhang X, Mark D, et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des. 2011;25(7):669.

    CAS  PubMed  Google Scholar 

  31. Shah NB, Duncan TM. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects. J Vis Exp. 2014;84:e51383. https://doi.org/10.3791/51383

  32. Kachko A, Loesgen S, Shahzad-Ul-Hussan S, Tan W, Zubkova I, Takeda K, et al. Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol Pharm. 2013;10(12):4590–602. https://doi.org/10.1021/mp400399b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma P, Tomar AK, Kundu B. Interplay between CedA, rpoB and double stranded DNA: a step towards understanding CedA mediated cell division in E. coli. Int J Biol Macromol. 2018;107:2026–33.

    CAS  PubMed  Google Scholar 

  34. Müller-Esparza H, Osorio-Valeriano M, Steube N, Thanbichler M, Randau L. Bio-layer interferometry analysis of the target binding activity of CRISPR-Cas effector complexes. Front Mol Biosci. 2020;7:98.

    PubMed  PubMed Central  Google Scholar 

  35. Normand A, Rivière E, Renodon-Cornière A. Identification and characterization of human Rad51 inhibitors by screening of an existing drug library. Biochem Pharmacol. 2014;91(3):293–300.

    CAS  PubMed  Google Scholar 

  36. McGrath TF, Campbell K, Fodey TL, O’Kennedy R, Elliott CT. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants. Anal Bioanal Chem. 2013;405(8):2535–44.

    CAS  PubMed  Google Scholar 

  37. Patiny L, Borel A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J Chem Inf Model. 2013;53(5):1223–8.

    CAS  PubMed  Google Scholar 

  38. Petersen RL. Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors. 2017;7(4):49.

    PubMed Central  Google Scholar 

  39. David B, Wolfender J-L, Dias DA. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev. 2015;14(2):299–315.

    CAS  Google Scholar 

  40. Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods. 2009;6(8):569–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J-H, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4(2):67–73.

    CAS  PubMed  Google Scholar 

  42. Perspicace S, Banner D, Benz J, Müller F, Schlatter D, Huber W. Fragment-based screening using surface plasmon resonance technology. J Biomol Screen. 2009;14(4):337–49.

    CAS  PubMed  Google Scholar 

  43. Piehler J, Brecht A, Gauglitz G, Zerlin M, Maul C, Thiericke R, et al. Label-free monitoring of DNA–ligand interactions. Anal Biochem. 1997;249(1):94–102.

    CAS  PubMed  Google Scholar 

  44. Hollstein U. Actinomycin. Chemistry and mechanism of action. Chem Rev. 1974;74(6):625–52.

    CAS  Google Scholar 

  45. Nafisi S, Saboury AA, Keramat N, Neault J-F, Tajmir-Riahi H-A. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J Mol Struct. 2007;827(1–3):35–43.

    CAS  Google Scholar 

  46. Chou WY, Marky LA, Zaunczkowski D, Breslauer KJ. The thermodynamics of drug-DNA interactions: ethidium bromide and propidium iodide. J Biomol Struct Dyn. 1987;5(2):345–59.

    CAS  PubMed  Google Scholar 

  47. Winston CT, Boger DL. Sequence-selective DNA recognition: natural products and nature’s lessons. Chem Biol. 2004;11(12):1607–17.

    Google Scholar 

  48. Hirayama H, Tamaoka J, Horikoshi K. Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res. 1996;24(20):4098–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. BBA-Rev Cancer. 2014;1845(1):84–9. https://doi.org/10.1016/j.bbcan.2013.12.002

  50. Bailly C, Chessari G, Carrasco C, Joubert A, Mann J, Wilson WD, et al. Sequence-specific minor groove binding by bis-benzimidazoles: water molecules in ligand recognition. Nucleic Acids Res. 2003;31(5):1514–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bailly C, Chaires JB. Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. Bioconjug Chem. 1998;9(5):513–38.

    CAS  PubMed  Google Scholar 

  52. Fornander LH, Wu L, Billeter M, Lincoln P, Nordén B. Minor-groove binding drugs: where is the second Hoechst 33258 molecule? J Phys Chem B. 2013;117(19):5820–30.

    CAS  PubMed  Google Scholar 

  53. Marky LA, Breslauer KJ. Origins of netropsin binding affinity and specificity: correlations of thermodynamic and structural data. Proc Natl Acad Sci U S A. 1987;84(13):4359–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lam KS. New aspects of natural products in drug discovery. Trends Microbiol. 2007;15(6):279–89.

    CAS  PubMed  Google Scholar 

  55. Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ, Villa S, et al. Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol. 2008;11(3):233–9.

    CAS  PubMed  Google Scholar 

  56. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screen. 2009;12(8):791–800.

    CAS  PubMed  Google Scholar 

  57. Fox KR, Wakelin LP, Waring MJ. Kinetics of the interaction between echinomycin and deoxyribonucleic acid. Biochemistry. 1981;20(20):5768–79.

    CAS  PubMed  Google Scholar 

  58. Van Dyke MM, Dervan PB. Echinomycin binding sites on DNA. Science. 1984;225(4667):1122–7.

    PubMed  Google Scholar 

  59. Barceló F, Capó D, Portugal J. Thermodynamic characterization of the multivalent binding of chartreusin to DNA. Nucleic Acids Res. 2002;30(20):4567–73.

    PubMed  PubMed Central  Google Scholar 

  60. Li H, Jiang Z, Zhang R. Fluorescence quenching and the binding interaction of lumichrome with nucleic acids. Chin Sci Bull. 2010;55(25):2829–34.

    CAS  Google Scholar 

  61. Eldridge GR, Vervoort HC, Lee CM, Cremin PA, Williams CT, Hart SM, et al. High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem. 2002;74(16):3963–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Khaled Attia Mahmoud and Jon Thorson (Center for Pharmaceutical Research and Innovation, Lexington KY) for their kind donation of the bacterial strain RM1-1. Thanks to James A. Strother (UF) for fruitful discussions. We acknowledge the support of the Oregon State University’s NMR Facility funded in part by the National Institutes of Health, HEI grant 1S10OD018518, and by the M. J. Murdock Charitable Trust grant no. 2014162.

Funding

This work was supported by OSU start-up funds and by the National Science Foundation under grant CHE 1808717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Loesgen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1.69 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overacker, R.D., Plitzko, B. & Loesgen, S. Biolayer interferometry provides a robust method for detecting DNA binding small molecules in microbial extracts. Anal Bioanal Chem 413, 1159–1171 (2021). https://doi.org/10.1007/s00216-020-03079-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03079-5

Keywords

Navigation