Skip to main content

Advertisement

Log in

Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Doxorubicin has been extensively used to treat cancers, and there are recent findings that the anticancer activities can be enhanced by curcumin. Although the two compounds have native fluorescence, they can hardly be quantified directly simultaneously using the laser-induced fluorescence (LIF) detection method. To avoid complex fluorescence derivatization and introduction of interfering components, a highly sensitive double wavelength excitation source LIF (D-W-Ex-LIF) detector composed of a 445-nm and 488-nm commercial laser diode was constructed to detect them simultaneously. Rhodamine 6G was selected as an internal standard, because its fluorescence can be excited at 445 nm and 488 nm. The native fluorescence of doxorubicin and curcumin and their resolution were enhanced by introducing mixed micelles. The optimal electrophoretic separation buffer was 10 mM borate buffer containing 20 mM Triton X-100, 5 mM sodium dodecyl sulfate, and 30% (v/v) methanol at pH 9.00. Therefore, the developed method was specific, accurate, and easily operable. Its limits of detection for doxorubicin and curcumin in human urine samples were 4.00 × 10−3 and 1.00 × 10−2 μg/mL, respectively, and the limits of quantification were 1.00 × 10−2 and 3.00 × 10−2 μg/mL, respectively. The recoveries were 94.9–109.1%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today. 2017;22:270–81.

    CAS  PubMed  Google Scholar 

  2. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10:853–8.

    PubMed  Google Scholar 

  3. Maniez-Devos DM, Baurain R, Lesne M, Trouet A. Degradation of doxorubicin and daunorubicin in human and rabbit biological fluids. J Pharm Biomed Anal. 1986;4:353–65.

    CAS  PubMed  Google Scholar 

  4. Moreira Romão PV, Calloi Palozi RA, Guarnier LP, Silva AO, Lorençone BR, Nocchi SR, et al. Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure. J Ethnopharmacol. 2019;242:112042.

    Google Scholar 

  5. Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;9:705–14.

    CAS  PubMed  Google Scholar 

  6. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102–12.

    CAS  PubMed  Google Scholar 

  7. Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res. 2017;115:133–48.

    CAS  PubMed  Google Scholar 

  8. Hay E, Lucariello A, Contieri M, Esposito T, De Luca A, Guerra G, et al. Therapeutic effects of turmeric in several diseases: an overview. Chem Biol Interact. 2019;310:108729.

    CAS  PubMed  Google Scholar 

  9. Sinjari B, Pizzicannella J, Aurora MD, Zappacosta R, Gatta V, Fontana A, et al. Curcumin/liposome nanotechnology as delivery platform for anti-inflammatory activities via NFkB/ERK/pERK pathway in human dental pulp treated with 2-hydroxyethyl methacrylate (HEMA). Front Physiol. 2019;10:1–7.

    Google Scholar 

  10. Namkaew J, Jaroonwitchawan T, Rujanapun N, Saelee J, Noisa P. Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. In Vitro Cell Dev Biol Anim. 2018;54:629–39.

    CAS  PubMed  Google Scholar 

  11. Baghbani F, Moztarzadeh F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces. 2017;153:132–40.

    CAS  PubMed  Google Scholar 

  12. Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol. 2019;859:172513.

    PubMed  Google Scholar 

  13. Wen C, Fu L, Huang J, Dai Y, Wang B, Xu G, et al. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin-resistant breast cancer cells. Mol Med Rep. 2019;19:5162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahale J, Howells LM, Singh R, Britton RG, Cai H, Brown K. An HPLC-UV method for the simultaneous quantification of curcumin and its metabolites in plasma and lung tissue: potential for preclinical applications. Biomed Chromatogr. 2018;32:e4280.

    Google Scholar 

  15. Chin DL, Lum BL, Sikic BI. Rapid determination of PEGylated liposomal doxorubicin and its major metabolite in human plasma by ultraviolet-visible high-performance liquid chromatography. J Chromatogr B. 2002;779:259–69.

    CAS  Google Scholar 

  16. Anubala S, Sekar R, Nagaiah K. Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis. Talanta. 2014;123:10–7.

    CAS  PubMed  Google Scholar 

  17. Kunati SR, Yang S, William BM, Xu Y. An LC-MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J Pharm Biomed Anal. 2018;156:189–98.

    CAS  PubMed  Google Scholar 

  18. Xie Y, Shao N, Jin Y, Zhang L, Jiang H, Xiong N, et al. Determination of non-liposomal and liposomal doxorubicin in plasma by LC-MS/MS coupled with an effective solid phase extraction: in comparison with ultrafiltration technique and application to a pharmacokinetic study. J Chromatogr B. 2018;1072:149–60.

    CAS  Google Scholar 

  19. Chisvert A, Sisternes J, Balaguer Á, Salvador A. A gas chromatography–mass spectrometric method to determine skin-whitening agents in cosmetic products. Talanta. 2010;81:530–6.

    CAS  PubMed  Google Scholar 

  20. Guo X, Wang K, Chen G, Shi J, Wu X, Di L, et al. Determination of strobilurin fungicide residues in fruits and vegetables by nonaqueous micellar electrokinetic capillary chromatography with indirect laser-induced fluorescence. Electrophoresis. 2017;38:2004–10.

    CAS  PubMed  Google Scholar 

  21. Ali I, Haque A, Wani WA, Saleem K, Al ZM. Analyses of anticancer drugs by capillary electrophoresis: a review. Biomed Chromatogr. 2013;27:1296–311.

    CAS  PubMed  Google Scholar 

  22. Ali I, Gupta VK, Aboul-Enein HY. Metal ion speciation and capillary electrophoresis: application in the new millennium. Electrophoresis. 2005;26:3988–4002.

    CAS  PubMed  Google Scholar 

  23. Pérez-Míguez R, Marina ML, Castro-Puyana M. Capillary electrophoresis determination of non-protein amino acids as quality markers in foods. J Chromatogr A. 2016;1428:97–114.

    PubMed  Google Scholar 

  24. Al-Othman ZA, Al-Warthan A, Alam SD, Ali I. Enantio-separation of drugs with multiple chiral centers by chromatography and capillary electrophoresis. Biomed Chromatogr. 2014;28:1514–24.

    CAS  PubMed  Google Scholar 

  25. Ali I, Alharbi O, Marsin SM. Nano-capillary electrophoresis for environmental analysis. Environ Chem Lett. 2016;14:79–98.

    CAS  PubMed  Google Scholar 

  26. Kostanyan AE. Multiple dual mode counter-current chromatography with periodic sample injection: steady-state and non-steady-state operation. J Chromatogr A. 2014;1373:81–9.

    CAS  PubMed  Google Scholar 

  27. Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci. 2014;37:2447–66.

    CAS  PubMed  Google Scholar 

  28. Ali I, Suhail M, Asnin L. Chiral separation of quinolones by liquid chromatography and capillary electrophoresis. J Sep Sci. 2017;40:2863–82.

    CAS  PubMed  Google Scholar 

  29. Lačná J, Přikryl J, Teshima N, Murakami H, Esaka Y, Foret F, et al. Optimization of background electrolyte composition for simultaneous contactless conductivity and fluorescence detection in capillary electrophoresis of biological samples. Electrophoresis. 2019;0:1–8.

    Google Scholar 

  30. Gassmann E, Kuo JE, Zare RN. Electrokinetic separation of chiral compounds. Science. 1985;230:813–4.

    CAS  PubMed  Google Scholar 

  31. Ban E, Song EJ. Recent developments and applications of capillary electrophoresis with laser-induced fluorescence detection in biological samples. J Chromatogr B. 2013;929:180–6.

    CAS  Google Scholar 

  32. Szökő É, Tábi T. Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection. J Pharm Biomed Anal. 2010;53:1180–92.

    PubMed  Google Scholar 

  33. Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary electrophoresis: trends and recent advances. Anal Chem. 2018;90:1464–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gautier J, Munnier E, Soucé M, Chourpa I, Douziech Eyrolles L. Analysis of doxorubicin distribution in MCF-7 cells treated with drug-loaded nanoparticles by combination of two fluorescence-based techniques, confocal spectral imaging and capillary electrophoresis. Anal Bioanal Chem. 2015;407:3425–35.

    CAS  PubMed  Google Scholar 

  35. Kim HS, Wainer IW. Simultaneous analysis of liposomal doxorubicin and doxorubicin using capillary electrophoresis and laser induced fluorescence. J Pharm Biomed Anal. 2010;52:372–6.

    CAS  PubMed  Google Scholar 

  36. Wu C, Wang W, Quan F, Chen P, Qian J, Zhou L, et al. Sensitive analysis of curcuminoids via micellar electrokinetic chromatography with laser-induced native fluorescence detection and mixed micelles-induced fluorescence synergism. J Chromatogr A. 2018;1564:207–13.

    CAS  PubMed  Google Scholar 

  37. Eder AR, Chen JS, Arriaga EA. Separation of doxorubicin and doxorubicinol by cyclodextrin-modified micellar electrokinetic capillary chromatography. Electrophoresis. 2006;27:3263–70.

    CAS  PubMed  Google Scholar 

  38. Yang X, Gao H, Qian F, Zhao C, Liao X. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J Pharm Biomed Anal. 2016;117:118–24.

    CAS  PubMed  Google Scholar 

  39. Zhai H, Yuan K, Yu X, Chen Z, Liu Z, Su Z. A simple and compact fluorescence detection system for capillary electrophoresis and its application to food analysis. Electrophoresis. 2015;36:2509–15.

    CAS  PubMed  Google Scholar 

  40. Yu W, Yu X, Han X, Wang S, Chen Z, Zhai H. A simple and highly sensitive masking fluorescence detection system for capillary array electrophoresis and its application to food and medicine analysis. J Chromatogr A. 2020;1620:460968.

    CAS  PubMed  Google Scholar 

  41. Sahu A, Kasoju N, Bora U. Fluorescence study of the curcumin−casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules. 2008;9:2905–12.

    CAS  PubMed  Google Scholar 

  42. Zhou L, Wang S, Tian K, Dong Y, Hu Z. Simultaneous determination of catecholamines and amino acids by micellar electrokinetic chromatography with laser-induced fluorescence detection. J Sep Sci. 2007;30:110–7.

    CAS  PubMed  Google Scholar 

  43. Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation andin vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv. 2018;25:484–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Moreno-González D, Lupión-Enríquez I, García-Campaña AM. Trace determination of tetracyclines in water samples by capillary zone electrophoresis combining off-line and on-line sample preconcentration. Electrophoresis. 2016;37:1212–9.

    PubMed  Google Scholar 

  45. Sun X, Gao C, Cao W, Yang X, Wang E. Capillary electrophoresis with amperometric detection of curcumin in Chinese herbal medicine pretreated by solid-phase extraction. J Chromatogr A. 2002;962:117–25.

    CAS  PubMed  Google Scholar 

  46. Ho JA, Fan N, Fang-ju Jou A, Wu L, Sun T. Monitoring the subcellular localization of doxorubicin in CHO-K1 using MEKC−LIF: liposomal carrier for enhanced drug delivery. Talanta. 2012;99:683–8.

    CAS  PubMed  Google Scholar 

  47. Chao Y, Whang C. Capillary zone electrophoresis of eleven priority phenols with indirect fluorescence detection. J Chromatogr A. 1994;663:229–37.

    CAS  Google Scholar 

  48. Liu H, Li Y, Shi A, Hu H, Sheng X, Liu L, et al. Rheological characteristics and chain conformation of mannans obtained from Saccharomyces cerevisiae. Int J Biol Macromol. 2018;107:2404–11.

    CAS  PubMed  Google Scholar 

  49. Tianqing L, Rong G, Genping S. Determination of the diffusion coefficient for SDS micelle with different shape and the effects of ethanol by cyclic voltammetry without probes. J Dispers Sci Technol. 2007;17:509–26.

    Google Scholar 

  50. Zhou L, Luo Z, Wang S, Hui Y, Hu Z, Chen X. In-capillary derivatization and laser-induced fluorescence detection for the analysis of organophosphorus pesticides by micellar electrokinetic chromatography. J Chromatogr A. 2007;1149:377–84.

    CAS  PubMed  Google Scholar 

  51. Huie CW. Effects of organic solvents on sample pretreatment and separation performances in capillary electrophoresis. Electrophoresis. 2003;24:1508–29.

    CAS  PubMed  Google Scholar 

  52. Ansar SM, Jiang W, Mudalige T. Direct quantification of unencapsulated doxorubicin in liposomal doxorubicin formulations using capillary electrophoresis. Int J Pharm. 2018;549:109–14.

    CAS  PubMed  Google Scholar 

  53. Kepinska M, Kizek R, Milnerowicz H. Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: capillary electrophoresis analysis. Electrophoresis. 2018;39:2370–9.

    CAS  PubMed  Google Scholar 

  54. Mbuna J, Kaneta T, Imasaka T. Measurement of intracellular accumulation of anthracyclines in cancerous cells by direct injection of cell lysate in MEKC/LIF detection. Electrophoresis. 2010;31:1396–404.

    CAS  PubMed  Google Scholar 

  55. Kalaycıoğlu Z, Hashemi P, Günaydın K, Erim FB. The sensitive capillary electrophoretic-LIF method for simultaneous determination of curcuminoids in turmeric by enhancing fluorescence intensities of molecules upon inclusion into (2-hydroxypropyl)-β-cyclodextrin. Electrophoresis. 2015;36:2516–21.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 21005021), Natural Science Foundation of Guangdong Province (No. 2016A030313740), and Guangdong Provincial Science and Technology Project (No. 2016B030303002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Yu or Haiyun Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The authorized Human Health and Ethics Committee of Guangdong Pharmaceutical University approved this study, and all methods were carried out in accordance with the relevant guidelines and regulations.

Consent to participate

All donors of clinical urine samples provided informed consent.

Consent for publication

All the authors and participants consent to publication of this manuscript in Analytical and Bioanalytical Chemistry.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yu, W., Han, X. et al. Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source. Anal Bioanal Chem 413, 469–478 (2021). https://doi.org/10.1007/s00216-020-03017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03017-5

Keywords

Navigation