Skip to main content
Log in

Chemically tailoring nanopores for single-molecule sensing and glycomics

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A nanopore can be fairly—but uncharitably—described as simply a nanofluidic channel through a thin membrane. Even this simple structural description holds utility and underpins a range of applications. Yet significant excitement for nanopore science is more readily ignited by the role of nanopores as enabling tools for biomedical science. Nanopore techniques offer single-molecule sensing without the need for chemical labelling, since in most nanopore implementations, matter is its own label through its size, charge, and chemical functionality. Nanopores have achieved considerable prominence for single-molecule DNA sequencing. The predominance of this application, though, can overshadow their established use for nanoparticle characterization and burgeoning use for protein analysis, among other application areas. Analyte scope continues to be expanded, and with increasing analyte complexity, success will increasingly hinge on control over nanopore surface chemistry to tune the nanopore, itself, and to moderate analyte transport. Carbohydrates are emerging as the latest high-profile target of nanopore science. Their tremendous chemical and structural complexity means that they challenge conventional chemical analysis methods and thus present a compelling target for unique nanopore characterization capabilities. Furthermore, they offer molecular diversity for probing nanopore operation and sensing mechanisms. This article thus focuses on two roles of chemistry in nanopore science: its use to provide exquisite control over nanopore performance, and how analyte properties can place stringent demands on nanopore chemistry. Expanding the horizons of nanopore science requires increasing consideration of the role of chemistry and increasing sophistication in the realm of chemical control over this nanoscale milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Graham MD. The Coulter principle: foundation of an industry. JALA. 2003;8(6):72–81.

    Google Scholar 

  2. Kasianowicz JJ. Bio-inspired nanopore-based sensors: comment on “Nanopores: a journey towards DNA sequencing” by M. Wanunu. Phys Life Rev. 2012;9(2):170–1.

    PubMed  Google Scholar 

  3. Bandara YMNDY, Karawdeniya BI, Dwyer JR. Push-button method to create nanopores using a Tesla-coil lighter. ACS Omega. 2019;4(1):226–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Waugh M, Briggs K, Gunn D, Gibeault M, King S, Ingram Q, et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat Protoc. 2020;15(1):122–43.

    PubMed  CAS  Google Scholar 

  5. Kwok H, Briggs K, Tabard-Cossa V. Nanopore fabrication by controlled dielectric breakdown. PLoS One. 2014;9(3):e92880.

    PubMed  PubMed Central  Google Scholar 

  6. Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Hagan JT, Dwyer JR. Challenging nanopores with analyte scope and environment. J Anal Test. 2019;3(1):61–79.

    Google Scholar 

  7. Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Dwyer JR. Surveying silicon nitride nanopores for glycomics and heparin quality assurance. Nat Commun. 2018;9(1):3278.

    PubMed  PubMed Central  Google Scholar 

  8. Im J, Lindsay S, Wang X, Zhang P. Single molecule identification and quantification of glycosaminoglycans using solid-state nanopores. ACS Nano. 2019;13(6):6308–18.

    PubMed  CAS  Google Scholar 

  9. National Research Council. Transforming glycoscience: a roadmap for the future. Washington, DC: The National Academies Press; 2012. p. 208.

    Google Scholar 

  10. Czjzek M. Biochemistry: a wine-induced breakdown. Nature. 2017;544(7648):45–6.

    PubMed  CAS  Google Scholar 

  11. Smeets RMM, Keyser UF, Krapf D, Wu M-Y, Dekker NH, Dekker C. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 2006;6(1):89–95.

    PubMed  CAS  Google Scholar 

  12. Guo P, Martin CR, Zhao Y, Ge J, Zare RN. General method for producing organic nanoparticles using nanoporous membranes. Nano Lett. 2010;10(6):2202–6.

    PubMed  CAS  Google Scholar 

  13. Venta K, Wanunu M, Drndić M. Electrically controlled nanoparticle synthesis inside nanopores. Nano Lett. 2013;13(2):423–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Ierardi V, Becker U, Pantazis S, Firpo G, Valbusa U, Jousten K. Nano-holes as standard leak elements. Measurement. 2014;58:335–41.

    Google Scholar 

  15. Savard M, Dauphinais G, Gervais G. Hydrodynamics of superfluid helium in a single nanohole. Phys Rev Lett. 2011;107(25):254501.

    PubMed  CAS  Google Scholar 

  16. Dwyer JR, Harb M. Through a window, brightly: a review of selected nanofabricated thin-film platforms for spectroscopy, imaging, and detection. Appl Spectrosc. 2017;71(9):2051–75.

    PubMed  CAS  Google Scholar 

  17. Dwyer JR, Bandara YMNDY, Whelan JC, Karawdeniya BI, Nichols JW. Silicon nitride thin films for nanofluidic device fabrication. In: Edel J, Ivanov A, Kim M, editors. Nanofluidics, 2nd Edition. RSC Nanoscience & Nanotechnology. 2 ed: Royal Society for Chemistry; 2016.

  18. Striemer CC, Gaborski TR, McGrath JL, Fauchet PM. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature. 2007;445(7129):749–53.

    PubMed  CAS  Google Scholar 

  19. Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS. Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci U S A. 2009;106(50):21039–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Gironès M, Borneman Z, Lammertink RGH, Wessling M. The role of wetting on the water flux performance of microsieve membranes. J Membr Sci. 2005;259(1–2):55–64.

    Google Scholar 

  21. Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC. Development and applications of very high flux microfiltration membranes. J Membr Sci. 1998;150(1):1–8.

    CAS  Google Scholar 

  22. Wang Y, Wang J, Gao M, Zhang X. A novel carbon material with nanopores prepared using a metal–organic framework as precursor for highly selective enrichment of N-linked glycans. Anal Bioanal Chem. 2017;409(2):431–8.

    PubMed  CAS  Google Scholar 

  23. Yang J, Ferranti DC, Stern LA, Sanford CA, Huang J, Ren Z, et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology. 2011;22(28):285310.

    PubMed  Google Scholar 

  24. Whelan JC, Karawdeniya BI, Bandara YMNDY, Velleco BD, Masterson CM, Dwyer JR. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores. ACS Appl Mater Interfaces. 2014;6(14):10952–7.

    PubMed  CAS  Google Scholar 

  25. Sexton LT, Horne LP, Martin CR. Developing synthetic conical nanopores for biosensing applications. Mol BioSyst. 2007;3(10):667–85.

    PubMed  CAS  Google Scholar 

  26. Whelan JC, Karawdeniya BI, Bandara YMNDY, Velleco BD, Masterson CM, Dwyer JR. Correction to electroless plating of thin gold films directly onto silicon nitride thin films and into micropores. ACS Appl Mater Interfaces. 2015;7(46):26004.

    PubMed  CAS  Google Scholar 

  27. Wharton JE, Jin P, Sexton LT, Horne LP, Sherrill SA, Mino WK, et al. A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small. 2007;3(8):1424–30.

    PubMed  CAS  Google Scholar 

  28. Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc. 2007;129(43):13144–52.

    PubMed  CAS  Google Scholar 

  29. Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR. Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc. 2005;127(14):5000–1.

    PubMed  CAS  Google Scholar 

  30. Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ. Disease detection and management via single nanopore-based sensors. Chem Rev. 2012;112(12):6431–51.

    PubMed  CAS  Google Scholar 

  31. Tabard-Cossa V, Wiggin M, Trivedi D, Jetha NN, Dwyer JR, Marziali A. Single-molecule bonds characterized by solid-state nanopore force spectroscopy. ACS Nano. 2009;3(10):3009–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Tropini C, Marziali A. Multi-nanopore force spectroscopy for DNA analysis. Biophys J. 2007;92(5):1632–7.

    PubMed  CAS  Google Scholar 

  33. Nakane J, Wiggin M, Marziali A. A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys J. 2004;87(1):615–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Mathe J, Visram H, Viasnoff V, Rabin Y, Meller A. Nanopore unzipping of individual DNA hairpin molecules. Biophys J. 2004;87(5):3205–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Guo W, Xia HW, Xia F, Hou X, Cao LX, Wang L, et al. Current rectification in temperature-responsive single nanopores. Chemphyschem. 2010;11(4):859–64.

    PubMed  CAS  Google Scholar 

  36. Bandara YMNDY, Karawdeniya BI, Hagan JT, Chevalier RB, Dwyer JR. Chemically functionalizing controlled dielectric breakdown silicon nitride nanopores by direct photohydrosilylation. ACS Appl Mater Interfaces. 2019;11(33):30411–20.

    PubMed  CAS  Google Scholar 

  37. Siwy ZS, Howorka S. Engineered voltage-responsive nanopores. Chem Soc Rev. 2010;39(3):1115–32.

    PubMed  CAS  Google Scholar 

  38. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science. 1996;274(5294):1859–65.

    PubMed  CAS  Google Scholar 

  39. Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. Nanoscale. 2019;11(42):19636–57.

    PubMed  CAS  Google Scholar 

  40. Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol. 2011;6:253–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Wanunu M, Meller A. Chemically modified solid-state nanopores. Nano Lett. 2007;7(6):1580–5.

    PubMed  CAS  Google Scholar 

  42. Sakai N, Matile S. Synthetic ion channels. Langmuir. 2013;29(29):9031–40.

    PubMed  CAS  Google Scholar 

  43. Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev. 2011;40(5):2385–401.

    PubMed  CAS  Google Scholar 

  44. Lepoitevin M, Ma T, Bechelany M, Janot J-M, Balme S. Functionalization of single solid state nanopores to mimic biological ion channels: a review. Adv Colloid Interf Sci. 2017;250:195–213.

    CAS  Google Scholar 

  45. Arafat A, Giesbers M, Rosso M, Sudhölter EJR, Schroën K, White RG, et al. Covalent biofunctionalization of silicon nitride surfaces. Langmuir. 2007;23(11):6233–44.

    PubMed  CAS  Google Scholar 

  46. Arafat A, Schroën K, de Smet LCPM, Sudhölter EJR, Zuilhof H. Tailor-made functionalization of silicon nitride surfaces. J Am Chem Soc. 2004;126(28):8600–1.

    PubMed  CAS  Google Scholar 

  47. Detcheverry F, Bocquet L. Thermal fluctuations in nanofluidic transport. Phys Rev Lett. 2012;109(2):024501.

    PubMed  Google Scholar 

  48. Frament CM, Dwyer JR. Conductance-based determination of solid-state nanopore size and shape: an exploration of performance limits. J Phys Chem C. 2012;116(44):23315–21.

    CAS  Google Scholar 

  49. Ali M, Ramirez P, Tahir MN, Mafe S, Siwy Z, Neumann R, et al. Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions. Nanoscale. 2011;3(4):1894–903.

    PubMed  CAS  Google Scholar 

  50. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40(11):2004–21.

    CAS  Google Scholar 

  51. Escorihuela J, Marcelis ATM, Zuilhof H. Metal-free click chemistry reactions on surfaces. Adv Mater Interfaces. 2015;2(13):1500135 n/a.

    Google Scholar 

  52. Wang Y, Yao F, Kang X-f. Tetramethylammonium-filled protein nanopore for single-molecule analysis. Anal Chem. 2015;87(19):9991–7.

    PubMed  CAS  Google Scholar 

  53. Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol. 2010;5(2):160–5.

    PubMed  CAS  Google Scholar 

  54. Lam MH, Briggs K, Kastritis K, Magill M, Madejski GR, McGrath JL, et al. Entropic trapping of DNA with a nanofiltered nanopore. ACS Appl Nano Mater. 2019;2(8):4773–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Madejski GR, Briggs K, DesOrmeaux J-P, Miller JJ, Roussie JA, Tabard-Cossa V, et al. Monolithic fabrication of NPN/SiNx dual membrane cavity for nanopore-based DNA sensing. Adv Mater Interfaces. 2019;6(14):1900684.

    PubMed  PubMed Central  Google Scholar 

  56. Briggs K, Madejski G, Magill M, Kastritis K, de Haan HW, McGrath JL, et al. DNA translocations through nanopores under nanoscale preconfinement. Nano Lett. 2018;18(2):660–8.

    PubMed  CAS  Google Scholar 

  57. Harris DC. Quantitative chemical analysis. 9th ed. New York: W.H. Freeman and Company; 2016.

  58. Faucher S, Aluru N, Bazant MZ, Blankschtein D, Brozena AH, Cumings J, et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J Phys Chem C. 2019;123(35):21309–26.

    CAS  Google Scholar 

  59. Schoch RB, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys. 2008;80(3):839–83.

    CAS  Google Scholar 

  60. Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal Chem. 2015;87(1):172–87.

    PubMed  CAS  Google Scholar 

  61. Firnkes M, Pedone D, Knezevic J, Döblinger M, Rant U. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 2010;6(8):895–909.

    Google Scholar 

  62. Robertson JWF, Rodrigues CG, Stanford VM, Rubinson KA, Krasilnikov OV, Kasianowicz JJ. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci U S A. 2007;104(20):8207–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Reiner JE, Kasianowicz JJ, Nablo BJ, Robertson JWF. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc Natl Acad Sci U S A. 2010;107(27):12080–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Bandara YMNDY, Saharia J, Karawdeniya BI, Hagan JT, Dwyer JR, Kim MJ. Beyond nanopore sizing: improving solid-state single-molecule sensing performance, lifetime, and analyte scope for omics by targeting surface chemistry during fabrication. Nanotechnology. 2020 (accepted).

  65. Anderson BN, Muthukumar M, Meller A. pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano. 2012;7(2):1408–14.

    PubMed  PubMed Central  Google Scholar 

  66. Weerakoon-Ratnayake KM, O’Neil CE, Uba FI, Soper SA. Thermoplastic nanofluidic devices for biomedical applications. Lab Chip. 2017;17(3):362–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Uba FI, Pullagurla SR, Sirasunthorn N, Wu J, Park S, Chantiwas R, et al. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels. Analyst. 2015;140(1):113–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Haywood DG, Harms ZD, Jacobson SC. Electroosmotic flow in nanofluidic channels. Anal Chem. 2014;86(22):11174–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Egatz-Gomez A, Wang C, Klacsmann F, Pan Z, Marczak S, Wang Y, et al. Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine. Biomicrofluidics. 2016;10(3):032902.

    PubMed  PubMed Central  Google Scholar 

  70. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26(10):1146–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Landscape of next-generation sequencing technologies. Anal Chem. 2011;83(12):4327–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Mathwig K, Albrecht T, Goluch ED, Rassaei L. Challenges of biomolecular detection at the nanoscale: nanopores and microelectrodes. Anal Chem. 2015;87(11):5470–5.

    PubMed  CAS  Google Scholar 

  73. Kudr J, Skalickova S, Nejdl L, Moulick A, Ruttkay-Nedecky B, Adam V, et al. Fabrication of solid-state nanopores and its perspectives. Electrophoresis. 2015;36(19):2367–79.

    PubMed  CAS  Google Scholar 

  74. Harms ZD, Haywood DG, Kneller AR, Jacobson SC. Conductivity-based detection techniques in nanofluidic devices. Analyst. 2015;140(14):4779–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Taniguchi M. Selective multidetection using nanopores. Anal Chem. 2015;87(1):188–99.

    PubMed  CAS  Google Scholar 

  76. Miles BN, Ivanov AP, Wilson KA, Dogan F, Japrung D, Edel JB. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev. 2013;42(1):15–28.

    PubMed  CAS  Google Scholar 

  77. Howorka S, Siwy Z. Nanopore analytics: sensing of single molecules. Chem Soc Rev. 2009;38(8):2360–84.

    PubMed  CAS  Google Scholar 

  78. Albrecht T, Edel JB, Winterhalter M. New developments in nanopore research—from fundamentals to applications. J Phys Condens Matter. 2010;22(45):450301.

    PubMed  Google Scholar 

  79. Freedman KJ, Haq SR, Edel JB, Jemth P, Kim MJ. Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci Rep. 2013;3:1638.

  80. Pastoriza-Gallego M, Breton M-F, Discala F, Auvray L, Betton J-M, Pelta J. Evidence of unfolded protein translocation through a protein nanopore. ACS Nano. 2014;8(11):11350–60.

    PubMed  CAS  Google Scholar 

  81. Payet L, Martinho M, Pastoriza-Gallego M, Betton J-M, Auvray L, Pelta J, et al. Thermal unfolding of proteins probed at the single molecule level using nanopores. Anal Chem. 2012;84(9):4071–6.

    PubMed  CAS  Google Scholar 

  82. Merstorf C, Cressiot B, Pastoriza-Gallego M, Oukhaled A, Betton J-M, Auvray L, et al. Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording. ACS Chem Biol. 2012;7(4):652–8.

    PubMed  CAS  Google Scholar 

  83. Cressiot B, Oukhaled A, Patriarche G, Pastoriza-Gallego M, Betton J-M, Auvray L, et al. Protein transport through a narrow solid-state nanopore at high voltage: experiments and theory. ACS Nano. 2012;6(7):6236–43.

    PubMed  CAS  Google Scholar 

  84. Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton J-M, Pelta J. Sensing proteins through nanopores: fundamental to applications. ACS Chem Biol. 2012;7(12):1935–49.

    PubMed  CAS  Google Scholar 

  85. Singh PR, Bárcena-Uribarri I, Modi N, Kleinekathöfer U, Benz R, Winterhalter M, et al. Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica. ACS Nano. 2012;6(12):10699–707.

    PubMed  CAS  Google Scholar 

  86. Jetha NN, Semenchenko V, Wishart DS, Cashman NR, Marziali A. Nanopore analysis of wild-type and mutant prion protein (PrPC): single molecule discrimination and PrPC kinetics. PLoS One. 2013;8(2):e54982.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Radu IS, Dhruti T, Andre M, Jeremy SL. Evidence that small proteins translocate through silicon nitride pores in a folded conformation. J Phys Condens Matter. 2010;22(45):454133.

    Google Scholar 

  88. Shi W, Friedman AK, Baker LA. Nanopore sensing. Anal Chem. 2017;89(1):157–88.

    PubMed  CAS  Google Scholar 

  89. Yusko EC, Bruhn BR, Eggenberger OM, Houghtaling J, Rollings RC, Walsh NC, et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat Nanotechnol. 2016;12:360.

    PubMed  Google Scholar 

  90. Movileanu L, Schmittschmitt JP, Martin Scholtz J, Bayley H. Interactions of peptides with a protein pore. Biophys J. 2005;89(2):1030–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Sha J, Si W, Xu B, Zhang S, Li K, Lin K, et al. Identification of spherical and nonspherical proteins by a solid-state nanopore. Anal Chem. 2018;90(23):13826–31.

    PubMed  CAS  Google Scholar 

  92. Restrepo-Pérez L, Joo C, Dekker C. Paving the way to single-molecule protein sequencing. Nat Nanotechnol. 2018;13(9):786–96.

    PubMed  Google Scholar 

  93. Bacri L, Oukhaled A, Hémon E, Bassafoula FB, Auvray L, Daniel R. Discrimination of neutral oligosaccharides through a nanopore. Biochem Biophys Res Commun. 2011;412(4):561–4.

    PubMed  CAS  Google Scholar 

  94. Fennouri A, Przybylski C, Pastoriza-Gallego M, Bacri L, Auvray L, Daniel R. Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. ACS Nano. 2012;6(11):9672–8.

    PubMed  CAS  Google Scholar 

  95. Fennouri A, Daniel R, Pastoriza-Gallego M, Auvray L, Pelta J, Bacri L. Kinetics of enzymatic degradation of high molecular weight polysaccharides through a nanopore: experiments and data-modeling. Anal Chem. 2013;85(18):8488–92.

    PubMed  CAS  Google Scholar 

  96. Kullman L, Winterhalter M, Bezrukov SM. Transport of maltodextrins through maltoporin: a single-channel study. Biophys J. 2002;82(2):803–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhao S, Zheng Y-B, Cai S-L, Weng Y-H, Cao S-H, Yang J-L, et al. Sugar-stimulated robust nanodevice: 4-carboxyphenylboronic acid modified single glass conical nanopores. Electrochem Commun. 2013;36:71–4.

    CAS  Google Scholar 

  98. Zheng Y-B, Zhao S, Cao S-H, Cai S-L, Cai X-H, Li Y-Q. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode. Nanoscale. 2017;9(1):433–9.

    PubMed  CAS  Google Scholar 

  99. Nguyen QH, Ali M, Neumann R, Ensinger W. Saccharide/glycoprotein recognition inside synthetic ion channels modified with boronic acid. Sensors Actuators B Chem. 2012;162(1):216–22.

    CAS  Google Scholar 

  100. Vilozny B, Wollenberg AL, Actis P, Hwang D, Singaram B, Pourmand N. Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette. Nanoscale. 2013;5(19):9214–21.

    PubMed  CAS  Google Scholar 

  101. Sun Z, Han C, Wen L, Tian D, Li H, Jiang L. pH gated glucose responsive biomimetic single nanochannels. Chem Commun. 2012;48(27):3282–4.

    CAS  Google Scholar 

  102. Oukhaled G, Bacri L, Mathé J, Pelta J, Auvray L. Effect of screening on the transport of polyelectrolytes through nanopores. EPL. 2008;82(4):48003.

    Google Scholar 

  103. Rivas F, Zahid OK, Reesink HL, Peal BT, Nixon AJ, DeAngelis PL, et al. Label-free analysis of physiological hyaluronan size distribution with a solid-state nanopore sensor. Nat Commun. 2018;9(1):1037.

    PubMed  PubMed Central  Google Scholar 

  104. Ma T, Balanzat E, Janot J-M, Balme S. Single conical track-etched nanopore for a free-label detection of OSCS contaminants in heparin. Biosens Bioelectron. 2019;137:207–12.

    PubMed  CAS  Google Scholar 

  105. Li M, Xiong Y, Wang D, Liu Y, Na B, Qin H, et al. Biomimetic nanochannels for the discrimination of sialylated glycans via a tug-of-war between glycan binding and polymer shrinkage. Chem Sci. 2020;11(3):748–56.

    CAS  Google Scholar 

  106. Lester J, Chandler T, Gemene KL. Reversible electrochemical sensor for detection of high-charge density polyanion contaminants in heparin. Anal Chem. 2015;87(22):11537–43.

    PubMed  CAS  Google Scholar 

  107. Kim D-H, Park YJ, Jung KH, Lee K-H. Ratiometric detection of nanomolar concentrations of heparin in serum and plasma samples using a fluorescent chemosensor based on peptides. Anal Chem. 2014;86(13):6580–6.

    PubMed  CAS  Google Scholar 

  108. Liu H, Zhang Z, Linhardt RJ. Lessons learned from the contamination of heparin. Nat Prod Rep. 2009;26(3):313–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Korir A, Larive C. Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. Anal Bioanal Chem. 2009;393(1):155–69.

    PubMed  CAS  Google Scholar 

  110. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. New Engl J Med. 2008;358(23):2457–67.

    PubMed  CAS  Google Scholar 

  111. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008;26(6):669–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Linhardt RJ. 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J Med Chem. 2003;46(13):2551–64.

    PubMed  CAS  Google Scholar 

  113. Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics. Develop Growth Differ. 2019;61(5):316–26.

    Google Scholar 

  114. Winters-Hilt S, Akeson M. Nanopore cheminformatics. DNA Cell Biol. 2004;23(10):675–83.

    PubMed  CAS  Google Scholar 

  115. Winters-Hilt S, Vercoutere W, DeGuzman VS, Deamer D, Akeson M, Haussler D. Highly accurate classification of Watson-Crick basepairs on termini of single DNA molecules. Biophys J. 2003;84(2):967–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Noakes MT, Brinkerhoff H, Laszlo AH, Derrington IM, Langford KW, Mount JW, et al. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nat Biotechnol. 2019;37(6):651–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19(1):90.

    PubMed  PubMed Central  Google Scholar 

  118. Chien C-C, Shekar S, Niedzwiecki DJ, Shepard KL, Drndić M. Single-stranded DNA translocation recordings through solid-state nanopores on glass chips at 10 MHz measurement bandwidth. ACS Nano. 2019;13(9):10545–54.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Julie C. Whelan for fabrication and measurements related to the electrolessly plated nanopore arrays in Figure 2.

Funding

This work has been funded principally by National Science Foundation award CHE-1808344, in part by RI Research Alliance grants from the Rhode Island Science & Technology Advisory Council, and includes work supported by National Science Foundation CAREER award CBET-1150085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Dwyer.

Ethics declarations

Conflict of interest

Authors Bandara, Karawdeniya, and Dwyer have received a patent relating to the photohydrosilylation of silicon nitride nanopores, and are co-applicants on a provisional patent filing relating to the use of sodium hypochlorite in nanopore formation. Authors Hagan, Sheetz, Morris, and Chevalier declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagan, J.T., Sheetz, B.S., Bandara, Y.N.D. et al. Chemically tailoring nanopores for single-molecule sensing and glycomics. Anal Bioanal Chem 412, 6639–6654 (2020). https://doi.org/10.1007/s00216-020-02717-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02717-2

Keywords

Navigation