Skip to main content
Log in

Label-free iodide detection using functionalized carbon nanodots as fluorescent probes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A label-free fluorescent nanoprobe for iodide ion (I) detection was developed based on the direct fluorescence quenching of spermine-functionalized carbon dots (SC-dots), whether in complex biological fluids or living cells. The positively charged SC-dots were fabricated via one-step microwave synthesis and exhibited excellent optical properties. Due to the strong quenching ability of I, SC-dots were utilized for I detection with high sensitivity and excellent selectivity, which offered a relatively low detection limit of 0.18 μM. This strategy was also successfully applied for I detections in human serum and HeLa cells. The detection process is facile, highly sensitive and selective, providing a new insight into the potential applications of SC-dots for anion nanoprobe designs in clinical diagnosis and other biologically related areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caltagirone C, Gale PA. Anion receptor chemistry: highlights from 2007. Chem Soc Rev. 2009;38:520–63.

    Article  PubMed  CAS  Google Scholar 

  2. Martinez-Manez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev. 2003;103:4419–76.

    Article  PubMed  CAS  Google Scholar 

  3. Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endo. 2015;3(4):286–95.

    Article  CAS  Google Scholar 

  4. Tuccilli C, Baldini E, Truppa E, D’Auria B, De Quattro D, Cacciola G, et al. Iodine deficiency in pregnancy: still a health issue for the women of Cassino city, Italy. Nutrition. 2018;50:60–5.

    Article  PubMed  CAS  Google Scholar 

  5. Cui SL, Liu P, Su XH, Liu SJ. Surveys in areas of high risk of iodine deficiency and iodine excess in China, 2012-2014: current status and examination of the relationship between urinary iodine concentration and goiter prevalence in children aged 8-10 years. Biomed Environ Sci. 2017;30(2):88–96.

    PubMed  Google Scholar 

  6. Hetzel BS. Commentary: from iodine deficiency in Papua New Guinea to a global programme of prevention. Int J Epidemiol. 2012;41(3):595–8.

    Article  PubMed  Google Scholar 

  7. Ma B, Zeng F, Zheng F, Wu S. A fluorescence turn-on sensor for iodide based on a thymine-HgII-thymine complex. Chem Eur J. 2011;17:14844–50.

    Article  PubMed  CAS  Google Scholar 

  8. Almeida AA, Jun X, Lima J. Ion chromatographic determination of iodide in urine and serum using a tubular ion-selective electrode based on a homogeneous crystalline membrane. Mikrochim Acta. 1997;127:55–60.

    Article  CAS  Google Scholar 

  9. Ito K, Ichihara T, Zhuo H, Kumamoto K, Timerbaev AR, Hirokawa T. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration - comparison with ion chromatography. Anal Chim Acta. 2003;497:67–74.

    Article  CAS  Google Scholar 

  10. Rong L, Lim LW, Takeuchi T. Rapid determination of iodide in seawater samples by ion chromatography with chemically-bonded vitamin-U stationary phase. Microchem J. 2013;108:113–6.

    Article  CAS  Google Scholar 

  11. Espada-Bellido E, Bi Z, Salaün P. Determination of iodide and total iodine in estuarine waters by cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode. Talanta. 2017;174:165–70.

    Article  PubMed  CAS  Google Scholar 

  12. Drozd AV, Tishakova TS. Spectrophotometric determination of trace amounts of iodide-ions in form of ionic associate with brilliant green using electrochemical oxidation. Cent Eur J Chem. 2011;9:432–6.

    Article  CAS  Google Scholar 

  13. Lyczewska M, Kakietek M, Maksymiuk K, Mieczkowski J, Michalska A. Comparison of trihexadecylalkylammonium iodides as ion-exchangers for polyacrylate and poly(vinyl chloride) based iodide-selective electrodes. Sensors Act B-Chem. 2010;146:283–8.

    Article  CAS  Google Scholar 

  14. Ratanawimarnwong N, Amomthammarong N, Choengchan N, Chaisuwan P, Amatatongchai M, Wilairat P, et al. Determination of iodide by detection of iodine using gas-diffusion flow injection and chemiluminescence. Talanta. 2005;65:756–61.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng HJ, Yan H, Sun YL, Lu CY, Huang TY, Chen SJ, et al. A simple and highly selective receptor for iodide in aqueous solution. Analyst. 2012;137:571–4.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar A, Chhatra RK, Pandey PS. Synthesis of click bile acid polymers and their application in stabilization of silver nanoparticles showing iodide sensing property. Org Lett. 2010;12:24–7.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang J, Xu X, Yang C, Yang F, Yang X. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Anal Chem. 2011;83:3911–7.

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Han C, Zhang L. Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions. J Mater Chem. 2008;18:4543–8.

    Article  CAS  Google Scholar 

  19. Pienpinijtham P, Han XX, Ekgasit S, Ozaki Y. Coupling reaction-based ultrasensitive detection of phenolic estrogens using surface-enhanced resonance Raman scattering. Anal Chem. 2011;83:3655–62.

    Article  PubMed  CAS  Google Scholar 

  20. Chen YM, Cheng TL, Tseng WL. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles. Analyst. 2009;134:2106–12.

    Article  PubMed  CAS  Google Scholar 

  21. Shang ZB, Wang Y, Jin WJ. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta. 2009;78:364–9.

    Article  PubMed  CAS  Google Scholar 

  22. Song J, Zhao L, Ye Y. Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection. Nanomaterials. 2018;8(12):1043.

    Article  PubMed Central  CAS  Google Scholar 

  23. Wang M, Wu ZK, Yang J, Wang GZ, Wang HZ, Cai WP. Au-25(SG)(18) as a fluorescent iodide sensor. Nanoscale. 2012;4:4087–90.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang M, Ye BC. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem Commun. 2012;48:3647–9.

    Article  CAS  Google Scholar 

  25. Cao L, Yang ST, Wang X, Luo PG, Liu JH, Sahu S, et al. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics. 2012;2:295–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cao L, Sahu S, Anilkumar P, Bunker CE, Xu JA, Fernando KA, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc. 2011;133:4754–7.

    Article  PubMed  CAS  Google Scholar 

  27. Chen YF, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 2002;74:5132–8.

    Article  PubMed  CAS  Google Scholar 

  28. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8.

    Article  PubMed  CAS  Google Scholar 

  29. Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, et al. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano. 2012;6:400–9.

    Article  PubMed  CAS  Google Scholar 

  30. Li Q, Ohulchanskyy TY, Liu RL, Koynov K, Wu DQ, Best A, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phy Chem C. 2010;114:12062–8.

    Article  CAS  Google Scholar 

  31. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7.

    Article  PubMed  CAS  Google Scholar 

  32. Wang XH, Qu KG, Xu BL, Ren JS, Qu XG. Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 2011;4:908–20.

    Article  CAS  Google Scholar 

  33. Yang ST, Cao L, Luo PG, Lu FS, Wang X, Wang HF, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PJ, et al. Carbon dots for multiphoton bioimaging. Am Chem Soc. 2007;129:11318–9.

    Article  CAS  Google Scholar 

  35. Zhou L, Lin Y, Huang Z, Ren J, Qu X. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun. 2012;48:1147–9.

    Article  CAS  Google Scholar 

  36. Liu S, Tian JQ, Wang L, Zhang YW, Qin XY, Luo Y, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of cu(II) ions. Adv Mater. 2012;24:2037–41.

    Article  PubMed  CAS  Google Scholar 

  37. Huang H, Weng YH, Zheng LH, Yao BX, Weng W, Lin XC. Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, L-cysteine and iodide ions. J Colloid Interf Sci. 2017;506:373–8.

    Article  CAS  Google Scholar 

  38. Du FK, Zeng F, Ming YH, Wu SZ. Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchim Acta. 2013;180:453–60.

    Article  CAS  Google Scholar 

  39. Huang S, Yang EL, Yang JD, Liu Y, Xiao Q. Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells. Anal Chim Acta. 2018;1035:192–202.

    Article  PubMed  CAS  Google Scholar 

  40. Feng LY, Zhao AD, Ren JS, Qu XG. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res. 2013;41:7987–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang HM, Li YB, Liu XL, Liu PR, Wang Y, An TC, et al. Determination of iodide via direct fluorescence quenching at nitrogen-doped carbon quantum dot fluorophores. Environ Sci Technol Lett. 2014;1:87–91.

    Article  CAS  Google Scholar 

  42. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21(13):2803–9.

    Article  CAS  Google Scholar 

  43. Wang X, Cao L, Lu FS, Meziani MJ, Li H, Qi G, et al. Photoinduced electron transfers with carbon dots. Chem Commun. 2009;25:3774–6.

    Article  CAS  Google Scholar 

  44. Li A-F, Wang J-H, Wang F, Jiang Y-B. Anion complexation and sensing using modified urea and thiourea-based receptors. Chem Soc Rev. 2010;39:3729–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the National Natural Science Foundation of China (No. 21705106), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2016023), and the Shanghai Natural Science Foundation (No. 18ZR1415400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyan Feng.

Ethics declarations

The authors declare that they have no conflict of interests. All procedures performed in studies involving human participants were in accordance with the ethical standard of the institutional review committees of Shanghai University and Renji Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. An informed consent was required before serum collection according to federal guidelines.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, X., Hou, X. et al. Label-free iodide detection using functionalized carbon nanodots as fluorescent probes. Anal Bioanal Chem 412, 2893–2901 (2020). https://doi.org/10.1007/s00216-020-02530-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02530-x

Keywords

Navigation