Skip to main content
Log in

Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Paper-based immunoassays are effective methods that employ microfluidic paper-based analytical devices (μPADs) for the rapid, simple, and accurate quantification of analytes in point-of-care diagnosis. In this study, we developed a wax-printed multilayered μPAD for the colorimetric detection of carcinoembryonic antigen (CEA), where the device contained a movable and rotatable detection layer to allow the μPAD to switch the state of the sample solutions, i.e., flowing or storing in the sensing zones. A smartphone with a custom-developed program served as an automated colorimetric reader to capture and analyze images from the μPAD, before calculating and displaying the test results. After optimizing the crucial conditions for the assay, the proposed method exhibited a wide linear dynamic range from 0.5 to 70 ng/mL, with a low CEA detection limit of 0.015 ng/mL. The clinical performance of this method was successfully validated using 50 positive and 40 negative human serum samples, thereby demonstrating the high sensitivity of 98.0% and specificity of 97.5% in the detection of CEA. The proposed method is greatly simplified compared with the cumbersome steps required for traditional immunoassays, but without any loss of accuracy and stability, as well as reducing the time needed to detect CEA. Complex and bulky instruments are replaced with a smartphone. The proposed detection platform could potentially be applied in point-of-care testing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Oesterling JE. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol. 1991;145(5):907–23.

    PubMed  CAS  Google Scholar 

  3. Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun. 2003;306(1):16–25.

    PubMed  CAS  Google Scholar 

  4. Hayes DF, Bast RC, Desch CE, Fritsche H Jr, Kemeny NE, Jessup JM, et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst. 1996;88(20):1456–66.

    PubMed  CAS  Google Scholar 

  5. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med. 2012;10(1):51.

    PubMed  PubMed Central  Google Scholar 

  6. Takahashi Y, Takeuchi T, Sakamoto J, Touge T, Mai M, Ohkura H, et al. The usefulness of CEA and/or CA19-9 in monitoring for recurrence in gastric cancer patients: a prospective clinical study. Gastric Cancer. 2003;6(3):142–5.

    PubMed  Google Scholar 

  7. Lai I-R, Lee W-J, Huang M-T, Lin H-H. Comparison of serum CA72-4, CEA, TPA, CA19-9 and CA125 levels in gastric cancer patients and correlation with recurrence. Hepatogastroenterology. 2002;49(46):1157–60.

    PubMed  Google Scholar 

  8. Ychou M, Duffour J, Kramar A, Gourgou S, Grenier J. Clinical significance and prognostic value of CA72-4 compared with CEA and CA19-9 in patients with gastric cancer. Dis Markers. 2000;16(3, 4):105–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Sun Z, Zhang N. Clinical evaluation of CEA, CA19-9, CA72-4 and CA125 in gastric cancer patients with neoadjuvant chemotherapy. World J Surg Oncol. 2014;12(1):397.

    PubMed  PubMed Central  Google Scholar 

  10. Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell. 1989;57(2):327–34.

    PubMed  CAS  Google Scholar 

  11. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415–8.

    PubMed  CAS  Google Scholar 

  12. Zhou F, Wang M, Yuan L, Cheng Z, Wu Z, Chen H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst. 2012;137(8):1779–84.

    PubMed  CAS  Google Scholar 

  13. Cai X, Weng S, Guo R, Lin L, Chen W, Zheng Z, et al. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker. Biosens Bioelectron. 2016;81:173–80.

    PubMed  CAS  Google Scholar 

  14. Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends Anal Chem. 2007;26(7):679–88.

    CAS  Google Scholar 

  15. Jie G-F, Liu P, Zhang S-S. Highly enhanced electrochemiluminescence of novel gold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor marker. Chem Commun. 2010;46(8):1323–5.

    CAS  Google Scholar 

  16. Guo Z, Hao T, Du S, Chen B, Wang Z, Li X, et al. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge. Biosens Bioelectron. 2013;44:101–7.

    PubMed  CAS  Google Scholar 

  17. Chakkarapani S, Zhang P, Ahn S, Kang S. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125. Biosens Bioelectron. 2016;81:23–31.

    PubMed  CAS  Google Scholar 

  18. Cheng AK, Su H, Wang YA, Yu H-Z. Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem. 2009;81(15):6130–9.

    PubMed  CAS  Google Scholar 

  19. Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: a review. Talanta. 2019.

  20. Hong L, Wang K, Yan W, Xu H, Chen Q, Zhang Y, et al. High performance immunochromatographic assay for simultaneous quantitative detection of multiplex cardiac markers based on magnetic nanobeads. Theranostics. 2018;8(22):6121.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Yan W, Wang K, Xu H, Huo X, Jin Q, Cui D. Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay. Nano-Micro Letters. 2019;11(1):7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, et al. Recombinase polymerase amplification-based assay for rapid detection of listeria monocytogenes in food samples. Food Anal Methods. 2017;10(6):1972–81.

    Google Scholar 

  23. Wang Y, Deng R, Zhang G, Li Q, Yang J, Sun Y, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. J Agric Food Chem. 2015;63(8):2172–8.

    PubMed  CAS  Google Scholar 

  24. Lin LK, Uzunoglu A, Stanciu LA. Aminolated and thiolated PEG-covered gold nanoparticles with high stability and antiaggregation for lateral flow detection of bisphenol A. Small. 2018;14(10):1702828.

    Google Scholar 

  25. Quesada-González D, Jairo GA, Blake RC, Blake DA, Merkoçi A. Uranium (VI) detection in groundwater using a gold nanoparticle/paper-based lateral flow device. Sci Rep. 2018;8(1):16157.

    PubMed  PubMed Central  Google Scholar 

  26. Qin W, Wang K, Xiao K, Hou Y, Lu W, Xu H, et al. Carcinoembryonic antigen detection with “handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron. 2017;90:508–15.

    PubMed  CAS  Google Scholar 

  27. Xiao K, Wang K, Qin W, Hou Y, Lu W, Xu H, et al. Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta. 2017;164:463–9.

    PubMed  CAS  Google Scholar 

  28. Serebrennikova K, Samsonova J, Osipov A. Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-micro letters. 2018;10(2):24.

    PubMed  Google Scholar 

  29. Xie Y, Chen D, Lin S. Microfluidic electrochemical detection techniques of cancer biomarkers. Nano Biomed Eng. 2017;9(1):57–71.

    CAS  Google Scholar 

  30. He Q, Ma C, Hu X, Chen H. Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal Chem. 2013;85(3):1327–31.

    PubMed  CAS  Google Scholar 

  31. Haller PD, Flowers CA, Gupta M. Three-dimensional patterning of porous materials using vapor phase polymerization. Soft Matter. 2011;7(6):2428–32.

    CAS  Google Scholar 

  32. Li F, Wang X, Liu J, Hu Y, He J. Double-layered microfluidic paper-based device with multiple colorimetric indicators for multiplexed detection of biomolecules. Sens Actuators B: Chem. 2019;288:266–73.

    CAS  Google Scholar 

  33. Wang X, Li F, Cai Z, Liu K, Li J, Zhang B, et al. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal Bioanal Chem. 2018;410(10):2647–55.

    PubMed  CAS  Google Scholar 

  34. Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.

    PubMed  CAS  Google Scholar 

  35. Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80(18):6928–34.

    PubMed  CAS  Google Scholar 

  36. He Y, Wu Y, Xiao X, Fu J, Xue G. A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography. RSC Adv. 2014;4(109):63860–5.

    CAS  Google Scholar 

  37. Xie L, Zi X, Zeng H, Sun J, Xu L, Chen S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal Chim Acta. 2019;1053:131–8.

    PubMed  CAS  Google Scholar 

  38. Chen C, Wang P, Yen Y, Lin H, Fan Y, Wu S, et al. Fast analysis of ketamine using a colorimetric immunosorbent assay on a paper-based analytical device. Sens Actuators B: Chem. 2019;282:251–8.

    CAS  Google Scholar 

  39. Mazzu-Nascimento T, Morbioli GG, Milan LA, Donofrio FC, Mestriner CA, Carrilho E. Development and statistical assessment of a paper-based immunoassay for detection of tumor markers. Anal Chim Acta. 2017;950:156–61.

    PubMed  CAS  Google Scholar 

  40. Gerold CT, Bakker E, Henry CS. Selective distance-based K+ quantification on paper-based microfluidics. Anal Chem. 2018;90(7):4894–900.

    PubMed  CAS  Google Scholar 

  41. Zhu X, Xiong S, Zhang J, Zhang X, Tong X, Kong S. Improving paper-based ELISA performance through covalent immobilization of antibodies. Sens Actuators B: Chem. 2018;255:598–604.

    CAS  Google Scholar 

  42. Ma L, Nilghaz A, Choi JR, Liu X, Lu X. Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chem. 2018;246:437–41.

    PubMed  CAS  Google Scholar 

  43. Pang B, Zhao C, Li L, Song X, Xu K, Wang J, et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: H7 detection. Anal Biochem. 2018;542:58–62.

    PubMed  CAS  Google Scholar 

  44. Hou Y, Wang K, Xiao K, Qin W, Lu W, Tao W, et al. Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res Lett. 2017;12(1):291.

    PubMed  PubMed Central  Google Scholar 

  45. Srinivasan B, O’Dell D, Finkelstein JL, Lee S, Erickson D, Mehta S. IronPhone: mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosens Bioelectron. 2018;99:115–21.

    PubMed  CAS  Google Scholar 

  46. Hou Y, Wang K, Yang M, Qin W, Xiao K, Yan W. Smartphone-based fluorescent diagnostic system for immunochromatographic chip. Nano Biomed Eng. 2017;9(1).

  47. Sekine Y, Kim SB, Zhang Y, Bandodkar AJ, Xu S, Choi J, et al. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip. 2018;18(15):2178–86.

    PubMed  CAS  Google Scholar 

  48. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, et al. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem. 2014;86(19):9554–62.

    PubMed  CAS  Google Scholar 

  49. Dai X, Rasamani KD, Hu F, Sun Y. Mesoporous SiO2 nanoparticles: a unique platform enabling sensitive detection of rare earth ions with smartphone camera. Nano-micro letters. 2018;10(4):55.

    PubMed  PubMed Central  Google Scholar 

  50. Kjellgren H, Gällstedt M, Engström G, Järnström L. Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym. 2006;65(4):453–60.

    CAS  Google Scholar 

  51. Verma MS, Tsaloglou M-N, Sisley T, Christodouleas D, Chen A, Milette J, et al. Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron. 2018;99:77–84.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support by the National Key Research and Development Program of China (Grant Nos. 2017FYA0205303 and 2017FYA0205301), the National Natural Science Foundation of China (Grant Nos. 81571835 and 81672247), and the Shanghai Science and Technology Fund (No. 15DZ225200), and the funding of SJTU (Nos. ZH2018QNA03 and YG2019QNB09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Yang, J., Xu, H. et al. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal Bioanal Chem 412, 2517–2528 (2020). https://doi.org/10.1007/s00216-020-02475-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02475-1

Keywords

Navigation