Skip to main content

Advertisement

Log in

Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Infectious diseases caused by bacteria still pose major diagnostic challenges in spite of the availability of various molecular approaches. Irrespective of the type of infection, rapid identification of the causative pathogen with a high degree of sensitivity and specificity is essential for initiating appropriate treatment. While existing methods like PCR possess high sensitivity, they are incapable of identifying the viability status of the pathogen and those which can, like culturing, are inherently slow. To overcome these limitations, we developed a diagnostic platform based on Raman microspectroscopy, capable of detecting biochemical signatures from a single bacterium for identification as well as viability assessment. The study also establishes a decontamination protocol for handling live pathogenic bacteria which does not affect identification and viability testing, showing applicability in the analysis of sputum samples containing pathogenic mycobacterial strains. The minimal sample processing along with multivariate analysis of spectroscopic signatures provides an interface for automatic classification, allowing the prediction of unknown samples by mapping signatures onto available datasets. Also, the novelty of the current work is the demonstration of simultaneous identification and viability assessment at a single bacterial level for pathogenic bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis. 2018;18(7):e199–210.

    PubMed  CAS  Google Scholar 

  2. Tiwari RP, Hattikudur NS, Bharmal RN, Kartikeyan S, Deshmukh NM, Bisen PS. Modern approaches to a rapid diagnosis of tuberculosis: promises and challenges ahead. Tuberculosis (Edinb). 2007;87(3):193–201.

    Google Scholar 

  3. Mothershed EA, Whitney AM. Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta. 2006;363(1–2):206–20.

    PubMed  CAS  Google Scholar 

  4. Wood RC, Luabeya AK, Weigel KM, Wilbur AK, Jones-Engel L, Hatherill M, et al. Detection of Mycobacterium tuberculosis DNA on the oral mucosa of tuberculosis patients. Sci Rep. 2015;5:8668.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Parida M, Sannarangaiah S, Dash PK, Rao PV, Morita K. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol. 2008;18(6):407–21.

    PubMed  CAS  Google Scholar 

  6. Li Y, Cu YT, Luo D. Multiplexed detection of patho-gen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol. 2005;23(7):885–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis. 2013;57(Suppl 3):S139–70.

    PubMed  PubMed Central  Google Scholar 

  8. Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2005;5:62.

    PubMed  PubMed Central  Google Scholar 

  9. De Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinckx L, Rossau R, et al. Rapid detec-tion of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis. 1995;76(5):425–30.

    PubMed  Google Scholar 

  10. Gautam R, Samuel A, Sil S, Chaturvedi D, Dutta A, Ariese F, Umapathy S. Raman and mid-infrared spectroscopic imaging: applications and advancements. 2015; 108:341–356.

  11. Kumar S, Matange N, Umapathy S, Visweswariah SS. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy. FEMS Microbiol Lett. 2015;362(3):1–6.

    PubMed  CAS  Google Scholar 

  12. Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K, Umapathy S. Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev. 2016;45(7):1879–900.

    PubMed  CAS  Google Scholar 

  13. Singh B, Gautam R, Kumar S, Kumar BNV, Nongthomba U, Nandi D, et al. Application of vibrational microspectroscopy to biology and medicine. Curr Sci India. 2012;102(2):232–44.

    CAS  Google Scholar 

  14. Wang K, Pu H, Sun DW. Emerging spectroscopic and spectral imaging techniques for the rapid detection of microorganisms: an overview. Compr Rev Food Sci Food Saf. 2018;17(2):256–73.

    Google Scholar 

  15. Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech Instrum. 2015;2(1):8.

    Google Scholar 

  16. Lorenz B, Wichmann C, Stöckel S, Rösch P, Popp J. Cultivation-free Raman spectroscopic investigations of bacteria. Trends Microbiol. 2017;25(5):413–24.

    PubMed  CAS  Google Scholar 

  17. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664.

    PubMed  CAS  Google Scholar 

  18. Kerr LT, Byrne HJ, Hennelly BM. Optimal choice of sample substrate and laser wavelength for Raman spectroscopic analysis of biological specimen. Anal Methods. 2015;7(12):5041–52.

    CAS  Google Scholar 

  19. Eichorst SA, Stasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol. 2015;91(10):1–14.

    Google Scholar 

  20. McCreery RL. Raman spectroscopy for chemical analysis. USA: Wiley-Interscience Publication; 2001.

    Google Scholar 

  21. Read DS, Whiteley AS. Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. J Microbiol Methods. 2015;109:79–83.

    PubMed  CAS  Google Scholar 

  22. Kloß S, Lorenz B, Dees S, Labugger I, Rösch P, Popp J. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Anal Bioanal Chem. 2015;407(27):8333–41.

    PubMed  Google Scholar 

  23. Lu X, Al-Qadiri HM, Lin M, Rasco BA. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol. 2011;4(6):919–35.

    Google Scholar 

  24. Tang M, McEwen GD, Wu Y, Miller CD, Zhou A. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Anal Bioanal Chem. 2013;405(5):1577–91.

    PubMed  CAS  Google Scholar 

  25. Buijtels PC, Willemse-Erix HF, Petit PL, Endtz HP, Puppels GJ, Verbrugh HA, et al. Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol. 2008;46(3):961–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol. 2003;41(1):324–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, et al. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol. 2001;67(4):1461–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Rosch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, et al. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol. 2005;71(3):1626–37.

    PubMed  PubMed Central  Google Scholar 

  29. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS. Raman microscopic analysis of single microbial cells. Anal Chem. 2004;76(15):4452–8.

    PubMed  CAS  Google Scholar 

  30. Stockel S, Meisel S, Elschner M, Rosch P, Popp J. Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches. Anal Chem. 2012;84(22):9873–80.

    PubMed  CAS  Google Scholar 

  31. Kloss S, Kampe B, Sachse S, Rosch P, Straube E, Pfister W, et al. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem. 2013;85(20):9610–6.

    PubMed  CAS  Google Scholar 

  32. Kusic D, Kampe B, Rosch P, Popp J. Identification of water pathogens by Raman microspectroscopy. Water Res. 2014;48:179–89.

    PubMed  CAS  Google Scholar 

  33. Silge A, Schumacher W, Rosch P, Da Costa Filho PA, Gerard C, Popp J. Identification of water-conditioned Pseudo-monas aeruginosa by Raman microspectroscopy on a single cell level. Syst Appl Microbiol. 2014;37(5):360–7.

    PubMed  CAS  Google Scholar 

  34. Meisel S, Stockel S, Rosch P, Popp J. Identification of meat-associated pathogens via Raman microspectroscopy. Food Microbiol. 2014;38:36–43.

    PubMed  CAS  Google Scholar 

  35. Strola SA, Baritaux JC, Schultz E, Simon AC, Al-lier C, Espagnon I, et al. Single bacteria identification by Raman spectroscopy. J Biomed Opt. 2014;19(11):111610.

    PubMed  Google Scholar 

  36. Stöckel S, Kirchhoff J, Neugebauer U, Rösch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2015;47(1):89–109.

    Google Scholar 

  37. Baritaux JC, Simon AC, Schultz E, Emain C, Lau-rent P, Dinten JM. A study on identification of bacteria in environmental samples using single-cell Raman spectroscopy: feasibility and reference libraries. Environ Sci Pollut Res Int. 2016;23(9):8184–91.

    PubMed  Google Scholar 

  38. Stockel S, Meisel S, Lorenz B, Kloss S, Henk S, Dees S, et al. Raman spectroscopic identification of Mycobacterium tuberculosis. J Biophotonics. 2017;10(5):727–34.

    PubMed  Google Scholar 

  39. Munchberg U, Rosch P, Bauer M, Popp J. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal Bioanal Chem. 2014;406(13):3041–50.

    PubMed  Google Scholar 

  40. Hlaing MM, Wood BR, McNaughton D, Rood JI, Fox EM, Augustin MA. Vibrational spectroscopy combined with transcriptomic analysis for investigation of bacterial responses towards acid stress. Appl Microbiol Biotechnol. 2018;102(1):333–43.

    PubMed  CAS  Google Scholar 

  41. Neugebauer U, Rosch P, Popp J. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents. 2015;46(Suppl 1):S35–9.

    PubMed  CAS  Google Scholar 

  42. Teng L, Wang X, Wang X, Gou H, Ren L, Wang T, et al. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Sci Rep. 2016;6:34359.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Kirchhoff J, Glaser U, Bohnert JA, Pletz MW, Popp J, Neugebauer U. Simple ciprofloxacin resistance test and determination of minimal inhibitory concentration within 2 h using Raman spectroscopy. Anal Chem. 2018;90(3):1811–8.

    PubMed  CAS  Google Scholar 

  44. Yang D, Zhou H, Haisch C, Niessner R, Ying Y. Reproducible E. coli detection based on label-free SERS and mapping. Talanta. 2016;146:457–63.

    PubMed  CAS  Google Scholar 

  45. Ivleva NP, Kubryk P, Niessner R. Raman microspec-troscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization. Anal Bioanal Chem. 2017;409(18):4353–75.

    PubMed  CAS  Google Scholar 

  46. Mosier-Boss PA. Review on SERS of bacteria. Biosen-sors (Basel). 2017, 7(4).

  47. Muhlig A, Bocklitz T, Labugger I, Dees S, Henk S, Richter E, et al. LOC-SERS: a promising closed system for the identification of mycobacteria. Anal Chem. 2016;88(16):7998–8004.

    PubMed  Google Scholar 

  48. Rivera-Betancourt OE, Karls R, Grosse-Siestrup B, Helms S, Quinn F, Dluhy RA. Identification of mycobacteria based on spectroscopic analyses of mycolic acid profiles. Analyst. 2013;138(22):6774–85.

    PubMed  CAS  Google Scholar 

  49. Walter A, Marz A, Schumacher W, Rosch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip. 2011;11(6):1013–21.

    PubMed  CAS  Google Scholar 

  50. Liu T-T, Lin Y-H, Hung C-S, Liu T-J, Chen Y, Huang Y-C, et al. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS One. 2009;4(5):e5470.

    PubMed  PubMed Central  Google Scholar 

  51. Galvan DD, Yu Q. Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Adv Healthc Mater. 2018.

  52. Grosse C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, et al. Label-free imaging and spectroscopic analysis of intracellular bacterial infections. Anal Chem. 2015;87(4):2137–42.

    PubMed  CAS  Google Scholar 

  53. Silge A, Abdou E, Schneider K, Meisel S, Bocklitz T, Lu-Walther HW, et al. Shedding light on host niches: label-free in situ detection of Mycobacterium gordonae via carotenoids in macrophages by Raman microspectroscopy. Cell Microbiol. 2015;17(6):832–42.

    PubMed  CAS  Google Scholar 

  54. Li R, Goswami U, King M, Chen J, Cesario TC, Rentzepis PM. In situ detection of live-to-dead bacteria ratio after inactivation by means of synchronous fluorescence and PCA. Proc Natl Acad Sci U S A. 2018;115(4):668–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron. 2017;94:131–40.

    PubMed  CAS  Google Scholar 

  56. Stockel S, Schumacher W, Meisel S, Elschner M, Rosch P, Popp J. Raman spectroscopy-compatible inactivation method for pathogenic endospores. Appl Environ Microbiol. 2010;76(9):2895–907.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health. 2014;2:103.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S. Kumar acknowledges DST for INSPIRE fellowship. S. Umapathy acknowledges the Department of Science and Technology (DST Grant No. SR/S2/JCB-52/2009) and the Department of Biotechnology (Grant No. BT/01/CEIB/09/IV/05), Government of India, for financial support. S. Umapathy is a J. C. Bose Fellow of the Department of Science and Technology. D.K. Saini acknowledges the Department of Biotechnology (DBT Grant No. BT/PR3260/BRB/10/967/ 2011; BT/PR17357/MED/29/1019/ 2016), Government of India; DST-FIST [SR/FST/LS11-036/2014(C)], UGC-SAP [F.4.13/2018/DRS-III (SAP-II)], and DBT-IISc Partnership Program Phase-II (BT/PR27952-INF/22/212/2018) for infrastructure and financial support and Infosys Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siva Umapathy or Deepak Kumar Saini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Gopinathan, R., Chandra, G.K. et al. Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy. Anal Bioanal Chem 412, 2505–2516 (2020). https://doi.org/10.1007/s00216-020-02474-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02474-2

Keywords

Navigation