Skip to main content
Log in

One-step and ultrasensitive ATP detection by using positively charged nano-gold@graphene oxide as a versatile nanocomposite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A versatile nanocomposite was simply prepared based upon the electrostatic adsorption of positively charged gold nanoparticles with negatively charged graphene oxide (nano-gold@GO), and utilized as a novel fluorescence quenching platform for ultrasensitive detection of adenosine triphosphate (ATP). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were used as fluorescent probes, DNA duplex was formed in the presence of ATP, and they can electrostatically adsorb onto the surface of nano-gold@GO to quench the fluorescence signal. Upon the addition of exonuclease III (Exo III), the DNA duplex would be hydrolyzed into DNA fragments and resulted in the recovery of the fluorescence signals due to the diffusion of AgNCs away from nano-gold@GO. Based on these, sensitive detection of ATP was realized with a detection range of 5.0 pM–20 nM. Notably, a good recovery in the range of 94–104% was obtained when detecting ATP in human serum samples, indicating a promising application value in early disease diagnosis.

A functional positively charged nano-gold@graphene oxide was fabricated and utilized as an enhanced fluorescence quenching platform for the detection of ATP, coupled with exonuclease III-assisted signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, et al. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012;72:304–14.

    PubMed  CAS  Google Scholar 

  2. Gourine AV, Enrique L, Nicholas D, Michael SK. ATP is a mediator of chemosensory transduction in the central nervous system. Nature. 2005;436:108–11.

    PubMed  CAS  Google Scholar 

  3. Lu C, Wang F, Willner I. Amplified optical aptasensors through the endonuclease-stimulated regeneration of the analyte. Chem Sci. 2012;3:2616–22.

    CAS  Google Scholar 

  4. Hu P, Zhu C, Jin L, Dong S. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification. Biosens Bioelectron. 2012;34:83–7.

    PubMed  CAS  Google Scholar 

  5. Fan D, Zhu X, Zhai Q, Wang E, Dong S. Polydopamine nanotubes as an effective fluorescent quencher for highly sensitive and selective detection of biomolecules assisted with exonuclease III amplification. Anal Chem. 2016;88:9158–65.

    PubMed  CAS  Google Scholar 

  6. Wu F, Liu W, Yang S, Yao Q, Chen Y, Weng X, et al. An aptamer-based ligation-triggered rolling circle amplification strategy for ATP detection and imaging in situ. J Photoch Photobio A. 2018;355:114–9.

    CAS  Google Scholar 

  7. Ding X, Cheng W, Li Y, Wu J, Li X, Cheng Q, et al. An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens Bioelectron. 2017;87:345–51.

    PubMed  CAS  Google Scholar 

  8. Li X, Wang Y, Wang L, Wei Q. A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules. Chem Commun. 2014;50:5049–52.

    CAS  Google Scholar 

  9. Li X, Peng Y, Chai Y, Yuan R, Xiang Y. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun. 2016;52:3673–6.

    CAS  Google Scholar 

  10. Luo J, Shen X, Li B, Li X, Zhou X. Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Microchim Acta. 2018;185:392.

    Google Scholar 

  11. Dai J, He H, Duan Z, Guo Y, Xiao D. Self-replicating catalyzed hairpin assembly for rapid signal amplification. Anal Chem. 2017;89:11971–5.

    PubMed  CAS  Google Scholar 

  12. Kong R, Song Z, Meng H, Zhang X, Shen G, Yu R. A label-free electrochemical biosensor for highly sensitive and selective detection of DNA via a dual-amplified strategy. Biosens Bioelectron. 2014;54:442–7.

    PubMed  CAS  Google Scholar 

  13. Xu J, Yu H, Hu Y, Chen M, Shao S. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens Bioelectron. 2016;75:1–7.

    PubMed  Google Scholar 

  14. Samanta A, Zhou Y, Zou S, Yan H, Liu Y. Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. Nano Lett. 2014;14:5052–7.

    PubMed  CAS  Google Scholar 

  15. Xing T, Zhao J, Weng G, Zhu J, Li J, Zhao J. Specific detection of carcinoembryonic antigen based on fluorescence quenching of hollow porous gold nanoshells with roughened surface. ACS Appl Mater Interfaces. 2017;9:36632–41.

    PubMed  CAS  Google Scholar 

  16. Miao X, Wang W, Kang T, Liu J, Shiu K, Leung C, et al. Ultrasensitive electrochemical detection of miRNA-21 by using an iridium (III) complex as catalyst. Biosens Bioelectron. 2016;86:454–8.

    PubMed  CAS  Google Scholar 

  17. Li Z, Miao X, Xing K, Peng X, Zhu A, Ling L. Ultrasensitive electrochemical sensor for Hg2+ by using hybridization chain reaction coupled with Ag@Au core–shell nanoparticles. Biosens Bioelectron. 2016;80:339–43.

    PubMed  CAS  Google Scholar 

  18. Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96:113002.

    PubMed  Google Scholar 

  19. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, et al. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron. 2015;63:506–12.

    PubMed  CAS  Google Scholar 

  20. Li F, Chao J, Li Z, Xing S, Su S, Li X, et al. Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. Anal Chem. 2015;87:3877–83.

    PubMed  CAS  Google Scholar 

  21. Zhou Q, Lin Y, Zhang K, Li M, Tang D. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron. 2018;101:146–52.

    PubMed  CAS  Google Scholar 

  22. Zhang K, Lv S, Lin Z, Tang D. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron. 2017;95:34–40.

    PubMed  CAS  Google Scholar 

  23. Chen X, Yu S, Yang L, Wang J, Jiang C. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor. Nanoscale. 2016;8:13669–77.

    PubMed  CAS  Google Scholar 

  24. Li Z, Xue N, Ma H, Cheng Z, Miao X. An ultrasensitive and switch-on platform for aflatoxin B1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites. Talanta. 2018;181:346–51.

    PubMed  CAS  Google Scholar 

  25. Wang Q, Li Q, Yang X, Wang K, Du S, Zhang H, et al. Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosens Bioelectron. 2016;77:1001–7.

    PubMed  CAS  Google Scholar 

  26. Myung S, Park J, Lee H, Kim KS, Hong S. Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv Mater. 2010;22:2045–9.

    PubMed  CAS  Google Scholar 

  27. Huang K, Niu D, Liu X, Wu Z, Fan Y, Chang Y, et al. Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochim Acta. 2011;56:2947–53.

    CAS  Google Scholar 

  28. Cui P, Seo S, Lee J, Wang L, Lee E, Min M, et al. Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano. 2011;5:6826–33.

    PubMed  CAS  Google Scholar 

  29. Liu G, Qi M, Zhang Y, Cao C, Goldys EM. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Anal Chim Acta. 2016;909:1–8.

    PubMed  CAS  Google Scholar 

  30. Yun Y, Song K. Preparation and characterization of graphene oxide encapsulated gold nanoparticles. J Nanosci Nanotechnol. 2013;13:7376–80.

    PubMed  CAS  Google Scholar 

  31. Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK. Graphene–gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials. 2016;9:406.

    PubMed Central  Google Scholar 

  32. Mao S, Lu G, Yu K, Bo Z, Chen J. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater. 2010;22:3521–6.

    PubMed  CAS  Google Scholar 

  33. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem. 2017;90:1098–103.

    PubMed  Google Scholar 

  34. Miao X, Li Z, Zhu A, Feng Z, Tian J, Peng X. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Biosens Bioelectron. 2016;83:39–44.

    PubMed  CAS  Google Scholar 

  35. Qu L, Wang N, Xu H, Wang W, Liu Y, Kuo L, et al. Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced raman scattering. Adv Funct Mater. 2017;27:1701714.

    Google Scholar 

  36. Moon H, Kumar D, Kim H, Sim C, Chang J, Kim J, et al. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano. 2015;9:2711–9.

    PubMed  CAS  Google Scholar 

  37. Wang J, Wang X, Wu S, Song J, Zhao Y, Ge Y, et al. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay. Anal Chim Acta. 2016;906:80–8.

    PubMed  CAS  Google Scholar 

  38. Pu W, Zhang L, Huang C. Graphene oxide as a nano-platform for ATP detection based on aptamer chemistry. Anal Methods. 2012;4:1662–6.

    CAS  Google Scholar 

  39. Ning Y, Wei K, Cheng L, Hu J, Xiang Q. Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease i-aided target recycling and signal amplification using graphene oxide as a quencher. Microchim Acta. 2017;184:1847–54.

    CAS  Google Scholar 

  40. Wang Y, Liu J, Duan L, Liu S, Jiang J. Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchim Acta. 2017;184:4183–8.

    CAS  Google Scholar 

  41. Cheng X, Cen Y, Xu G, Wei F, Shi M, Xu X, et al. Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Microchim Acta. 2018;185:144.

    Google Scholar 

  42. Zhang R, Sun J, Ji J, Pi F, Xiao Y, Zhang Y, et al. A novel “OFF-ON” biosensor based on nanosurface energy transfer between gold nanocrosses and graphene quantum dots for intracellular ATP sensing and tracking. Sensors Actuators B Chem. 2019;282:910–6.

    CAS  Google Scholar 

  43. El Kurdi R, Patra D. Nanosensing of ATP by fluorescence recovery after surface energy transfer between rhodamine B and curcubit [7] uril-capped gold nanoparticles. Microchim Acta. 2018;185:349.

    Google Scholar 

  44. Song Q, Peng M, Wang L, He D, Ouyang J. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core–shell Ag@SiO2 nanoparticles. Biosens Bioelectron. 2016;77:237–41.

    PubMed  CAS  Google Scholar 

  45. Ma K, Wang H, Li H, Wang S, Li X, Xu B, et al. A label-free aptasensor for turn-on fluorescent detection of ATP based on AIE-active probe and water-soluble carbon nanotubes. Sensors Actuators B Chem. 2016;230:556–8.

    CAS  Google Scholar 

  46. Song Q, Wang R, Sun F, Chen H, Wang Z, Na N, et al. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron. 2017;87:760–3.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Natural Science Foundation of Xuzhou City (KC18140) and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmin Miao.

Ethics declarations

Written informed consent was obtained from the patient for research use. The study was approved by the Jiangsu Normal University ethics committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, N., Wu, S., Li, Z. et al. One-step and ultrasensitive ATP detection by using positively charged nano-gold@graphene oxide as a versatile nanocomposite. Anal Bioanal Chem 412, 2487–2494 (2020). https://doi.org/10.1007/s00216-020-02470-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02470-6

Keywords

Navigation