Skip to main content
Log in

Construction of a novel cell-trappable fluorescent probe for hydrogen sulfide (H2S) and its bio-imaging application

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence detection of H2S in living organisms is greatly advantageous because it is nondestructive and can be used for in situ analysis. We have constructed a novel rhodamine analogue dye (Rho630) by extending the conjugated system of rhodamine to create a novel cell-trappable H2S fluorescent probe Rho630-AM-H2S with red light emission. Its application for H2S fluorescence detection in living HeLa cells and zebrafish was investigated. As expected, Rho630-AM-H2S showed a huge fluorescence turn-on response of about 20-fold at 630 nm and good selectivity toward H2S in solution. An MTT assay demonstrated that the probe showed negligible cytotoxicity in the concentrations typically used in fluorescence imaging experiments. Cell imaging experiments revealed that compared with compound 4 without cell-trappable unit modification, Rho630-AM-H2S exhibited remarkably enhanced cell penetration ability, as an enormous fluorescence signal increase was observed at the red channel within 5 min after Rho630-AM-H2S was incubated with HeLa cells. Finally, the probe Rho630-AM-H2S was used to detect H2S in living HeLa cells and zebrafish with great fluorescence enhancement in the red channel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perridon BW, Leuvenink HGD, Hillebrands J-L, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging-Us. 2016;8(10):2264–89.

    CAS  Google Scholar 

  2. Fernandes VS, Hernandez M. The role of nitric oxide and hydrogen sulfide in urinary tract function. Basic Clin Pharmacol. 2016;119:34–41.

    CAS  Google Scholar 

  3. Cuevasanta E, Moller MN, Alvarez B. Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys. 2017;617:9–25.

    CAS  PubMed  Google Scholar 

  4. Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017;74(8):1391–412.

    CAS  PubMed  Google Scholar 

  5. Hou L, Zhu D, Ma Q, Zhang D, Liu X. H2S synthetase AtD-CDes involves in ethylene and drought regulated stomatal movement. Sci Bull. 2017;61(15):1171–5.

    Google Scholar 

  6. Sen N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol. 2017;429(4):543–61.

    CAS  PubMed  Google Scholar 

  7. Perry SF, Tzaneva V. The sensing of respiratory gases in fish: mechanisms and signalling pathways. Respir Physiol Neurobiol. 2016;224:71–9.

    CAS  PubMed  Google Scholar 

  8. Vicente JB, Colaco HG, Malagrino F, Santo PE, Gutierres A, Bandeiras TM, et al. A clinically relevant variant of the human hydrogen sulfide-synthesizing enzyme cystathionine beta-synthase: increased CO reactivity as a novel molecular mechanism of pathogenicity? Oxidative Med Cell Longev. 2017;2017:8940321.

    Google Scholar 

  9. Tomasova L, Dobrowolski L, Jurkowska H, Wrobel M, Huc T, Ondrias K, et al. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide Biol Chem. 2016;60:50–8.

    CAS  Google Scholar 

  10. Liu X, Fu Z, Wu Y, Hu X Jr, Zhu T Jr, Jin C Jr. Neuroprotective effect of hydrogen sulfide on acute cauda equina injury in rats. Spine J. 2016;16(3):402–7.

    CAS  PubMed  Google Scholar 

  11. Donatti AF, Soriano RN, Andrade Leite-Panissi CR, Branco LGS, de Souza AS. Anxiolytic-like effect of hydrogen sulfide (H2S) in rats exposed and re-exposed to the elevated plus-maze and open field tests. Neurosci Lett. 2017;642:77–85.

    CAS  PubMed  Google Scholar 

  12. Garnett JP, Leiter JC. Hydrogen sulfide as a regulator of respiratory epithelial sodium transport: the role of sodium-potassium ATPase. Focus on “hydrogen sulfide contributes to hypoxic inhibition of airway transepithelial sodium absorption”. Am J Physiol-Reg I. 2016;311(3):564–5.

    Google Scholar 

  13. Hackfort BT, Mishra PK. Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol-Heart C. 2016;310(7):802–12.

    Google Scholar 

  14. Feliers D, Lee HJ, Kasinath BS. Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal. 2016;25(13):720–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shefa U, Yeo SG, Kim M-S, Song IO, Jung J, Jeong NY, et al. Role of gasotransmitters in oxidative stresses, neuroinflammation, and neuronal repair. Biomed Res Int. 2017;2017:1689341.

    PubMed  PubMed Central  Google Scholar 

  16. Weber GJ, Pushpakumar S, Tyagi SC, Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res. 2016;113:300–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li D-W, Qu L-L, Hu K, Long Y-T, Tian H. Monitoring of endogenous hydrogen sulfide in living cells using surface-enhanced raman scattering. Angew Chem Int Ed. 2015;4(43):12758–61.

    Google Scholar 

  18. Papapetropoulos A, Whiteman M, Cirino G. Pharmacological tools for hydrogen sulphide research: a brief, introductory guide for beginners. Br J Pharmacol. 2015;172(6):1633–7.

    CAS  PubMed  Google Scholar 

  19. Li L, Zhang Y, Liu F, Su M, Liang L, Ge S, et al. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode. Chem Commun. 2015;51(74):14030–3.

    CAS  Google Scholar 

  20. Xu T, Scafa N, Xu L-P, Zhou S, Al-Ghanem KA, Mahboob S, et al. Electrochemical hydrogen sulfide biosensors. Analyst. 2016;141(4):1185–95.

    CAS  PubMed  Google Scholar 

  21. Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev. 2013;114(1):590–659.

    PubMed  Google Scholar 

  22. Yang Y, Zhao Q, Feng W, Li F. Luminescent chemodosimeters for bioimaging. Chem Rev. 2012;113(1):192–270.

    PubMed  Google Scholar 

  23. You L, Zha D, Anslyn EV. Recent advances in supramolecular analytical chemistry using optical sensing. Chem Rev. 2015;115(15):7840–92.

    CAS  PubMed  Google Scholar 

  24. Zhou X, Lee S, Xu Z, Yoon J. Recent progress on the development of chemosensors for gases. Chem Rev. 2015;115(15):7944–8000.

    CAS  PubMed  Google Scholar 

  25. Yu F, Han X, Chen L. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chem Commun. 2014;50(82):12234–49.

    CAS  Google Scholar 

  26. Zhang D, Chen D, Kang J, Ye Y, Zhao Y, Xian M. Highly selective fluorescence off-on probes for biothiols and imaging in live cells. Org Biomol Chem. 2014;12(35):6837–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Duan Y-W, Yang X-F, Zhong Y, Guo Y, Li Z, Li H. A ratiometric fluorescent probe for gasotransmitter hydrogen sulfide based on a coumarin-benzopyrylium platform. Anal Chim Acta. 2015;859:59–65.

    CAS  PubMed  Google Scholar 

  28. Qian Y, Lin J, Liu T, Zhu H. Living cells imaging for copper and hydrogen sulfide by a selective “on-off-on” fluorescent probe. Talanta. 2015;132:727–32.

    CAS  PubMed  Google Scholar 

  29. Cui J, Zhang T, Sun Y-Q, Li D-P, Liu J-T, Zhao B-X. A highly sensitive and selective fluorescent probe for H2S detection with large fluorescence enhancement. Sensors Actuators B Chem. 2016;232:705–11.

    CAS  Google Scholar 

  30. Dai X, Zhang T, Liu Y-Z, Yan T, Li Y, Miao J-Y, et al. A ratiometric fluorescent probe for cysteine and its application in living cells. Sensors Actuators B Chem. 2015;207:872–7.

    CAS  Google Scholar 

  31. Peng B, Zhang C, Marutani E, Pacheco A, Chen W, Ichinose F, et al. Trapping hydrogen sulfide (H2S) with diselenides: the application in the design of fluorescent probes. Org Lett. 2015;17(6):1541–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan L, Zuo Q-P. Reaction-based fluorescent probe for hydrogen sulfide with large signal-to-noise ratio in living cells and tissues. Sensors Actuators B Chem. 2014;196:151–5.

    CAS  Google Scholar 

  33. Hammers MD, Taormina MJ, Cerda MM, Montoya LA, Seidenkranz DT, Parthasarathy R, et al. A bright fluorescent probe for H2S enables analyte-responsive, 3D imaging in live zebrafish using light sheet fluorescence microscopy. J Am Chem Soc. 2015;137(32):10216–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Zhu C, Cen J, Bai Y, He W, Guo Z. Ratiometric detection of pH fluctuation in mitochondria with a new fluorescein/cyanine hybrid sensor. Chem Sci. 2015;6(5):3187–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X-L, Du X-J, Dai C-G, Song Q-H. Ratiometric two-photon fluorescent probes for mitochondrial hydrogen sulfide in living cells. J Org Chem. 2014;79(20):9481–9.

    CAS  PubMed  Google Scholar 

  36. Xu SD, Fang CH, Tian GX, Chen Y, Dou YH, Kou JF, et al. Reduction of 4-azidonaphthalimide with different phosphine ligands and exploration of their spectroscopic properties. J Mol Struct. 2015;1102:197–202.

    CAS  Google Scholar 

  37. Zhang C, Zhang G, Feng L, Li J. A ratiometric fluorescent probe for sensitive and selective detection of hydrogen sulfide and its application for bioimaging. Sensors Actuators B Chem. 2015;216:412–7.

    CAS  Google Scholar 

  38. Gao M, Yu F, Chen H, Chen L. Near-infrared fluorescent probe for imaging mitochondrial hydrogen polysulfides in living cells and in vivo. Anal Chem. 2015;87(7):3631–8.

    CAS  PubMed  Google Scholar 

  39. Li J, Yin C, Huo F. Chromogenic and fluorogenic chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2009. RSC Adv. 2015;3:2191–206.

    Google Scholar 

  40. Xiang K, Liu Y, Li C, Tian B, Tong T, Zhang J. A colorimetric and ratiometric fluorescent probe with a large stokes shift for detection of hydrogen sulfide. Dyes Pigments. 2015;123:78–84.

    CAS  Google Scholar 

  41. Park CS, Ha TH, Choi S-A, Nguyen DN, Noh S, Kwon OS, et al. A near-infrared “turn-on” fluorescent probe with a self-immolative linker for the in vivo quantitative detection and imaging of hydrogen sulfide. Biosens Bioelectron. 2017;89:919–26.

    CAS  PubMed  Google Scholar 

  42. Zhang K, Zhang J, Xi Z, Li L-Y, Gu X, Zhang Q-Z, et al. A new H2S-specific near-infrared fluorescence-enhanced probe that can visualize the H2S level in colorectal cancer cells in mice. Chem Sci. 2017;8(4):2776–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Z, Liang D, Tang X. Visualizing hydrogen sulfide in mitochondria and lysosome of living cells and in tumors of living mice with positively charged fluorescent chemosensors. Anal Chem. 2016;88(18):9213–8.

    CAS  PubMed  Google Scholar 

  44. Huang K, Liu M, Wang X, Cao D, Gao F, Zhou K, et al. Cascade reaction and FRET-based fluorescent probe for the colorimetric and ratiometric signaling of hydrogen sulfide. Tetrahedron Lett. 2015;56(24):3769–73.

    CAS  Google Scholar 

  45. Shimamoto K, Hanaoka K. Fluorescent probes for hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies. Nitric Oxide Biol Chem. 2015;46:72–9.

    CAS  Google Scholar 

  46. Lakowicz JR. Principles of fluorescence spectroscopy. Boston: Springer US, Academic; 2006. p. 63–95.

    Google Scholar 

  47. Lakowicz JR. Principles of fluorescence spectroscopy. Boston: Springer US, Academic; 2006. p. 623–73.

    Google Scholar 

  48. Lin VS, Lippert AR, Chang CJ. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc Natl Acad Sci U S A. 2013;110(18):7131–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu K, Shang H, Kong X, Ren M, Wang J-Y, Liu Y, et al. A novel near-infrared fluorescent probe for H2O2 in alkaline environment and the application for H2O2 imaging in vitro and in vivo. Biomaterials. 2016;100:162–71.

    CAS  PubMed  Google Scholar 

  50. Zheng K, Lin W, Cheng D, Chen H, Liu Y, Liu K. A two-photon fluorescent turn-on probe for nitroxyl (HNO) and its bioimaging application in living tissues. Chem Commun. 2015;51(26):5754–7.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by NSFC (61605060, 31600472, 31570566, and 31800499), the Natural Science Foundation of Shandong Province (ZR2017LEM009), the Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China (Nos. ZR201707 and ZR201710), the Key Research and Development Program of Shandong Province (No. 2019GSF107052; 2017GSF17130), the Foundation of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control of China (KF201717), and the Undergraduate Innovation and Entrepreneurship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keyin Liu or Fangong Kong.

Ethics declarations

All animal procedures for this study were approved by the Animal Ethical Experimentation Committee of Shandong University according to the requirements of the National Act on the use of experimental animals (China).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Chen, Y., Wang, S. et al. Construction of a novel cell-trappable fluorescent probe for hydrogen sulfide (H2S) and its bio-imaging application. Anal Bioanal Chem 411, 7127–7136 (2019). https://doi.org/10.1007/s00216-019-02090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02090-9

Keywords

Navigation