Skip to main content
Log in

Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—is it worth to go the extra mile?

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential benefit of data fusion based on different complementary analytical techniques was investigated for two different classification tasks in the field of foodstuff authentication. Sixty-four honey samples from three different botanical origins and 53 extra virgin olive oil samples from three different geographical areas were analyzed by attenuated total reflection IR spectroscopy (ATR/FT-IR) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The obtained datasets were combined in a low-level data fusion approach with a subsequent multivariate classification by principal component analysis-linear discriminant analysis (PCA-LDA) or partial least squares-discriminant analysis (PLS-DA). Performing a back projection of PCA loadings, the influence of variables in the FT-IR spectra (one-dimensional) and the GC-IMS profiles (two-dimensional) on the discrimination was visualized within the original axis of the two data sources. Validation results of the classification models were compared to the results that could be obtained by using the individual data blocks separately. For both the honey and olive oil samples, a decreased cross-validation error rate and more robust model was obtained due to the low-level data fusion. The results show that data fusion is an effective strategy for improving the classification performance, particularly for challenging classification tasks such as the discrimination of olive oils with different geographical origin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zábrodská B, Vorlová L. Adulteration of honey and available methods for detection – a review. Acta Vet Brno. 2014;83:85–102. https://doi.org/10.2754/avb201483S10S85.

    Article  Google Scholar 

  2. Soares S, Amaral JS, Oliveira MBP, Mafra I. A comprehensive review on the main honey authentication issues: production and origin. Compr Rev Food Sci Food Saf. 2017;16:1072–100. https://doi.org/10.1111/1541-4337.12278.

    Article  CAS  Google Scholar 

  3. Vanstone N, Moore A, Martos P, Neethirajan S. Detection of the adulteration of extra virgin olive oil by near-infrared spectroscopy and chemometric techniques. Food Qual Saf. 2018;2:189–98. https://doi.org/10.1093/fqsafe/fyy018.

    Article  CAS  Google Scholar 

  4. Mendes TOE, da Rocha RA, Porto BLS, de Oliveira Marcone AL, dos Anjos VDC, Bell MJV. Quantification of extra-virgin olive oil adulteration with soybean oil: a comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches. Food Anal Methods. 2015;8:2339–46. https://doi.org/10.1007/s12161-015-0121-y.

    Article  Google Scholar 

  5. Carranco N, Farrés-Cebrián M, Saurina J, Núñez O. Authentication and quantitation of fraud in extra virgin olive oils based on HPLC-UV fingerprinting and multivariate calibration. Foods. 2018;7:E44. https://doi.org/10.3390/foods7040044.

    Article  CAS  PubMed  Google Scholar 

  6. Vasconcelos M, Coelho L, Barros A, de Almeida J, Yildiz F. Study of adulteration of extra virgin olive oil with peanut oil using FTIR spectroscopy and chemometrics. Cogent Food Agric. 2015;1:1018695. https://doi.org/10.1080/23311932.2015.1018695.

    Article  CAS  Google Scholar 

  7. Lai YW, Kemsley EK, Wilson RH. Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chem. 1995;53:95–8. https://doi.org/10.1016/0308-8146(95)95793-6.

    Article  CAS  Google Scholar 

  8. Garcia R, Martins N, Cabrita MJ. Putative markers of adulteration of extra virgin olive oil with refined olive oil: prospects and limitations. Food Res Int. 2013;54:2039–44. https://doi.org/10.1016/j.foodres.2013.05.008.

    Article  CAS  Google Scholar 

  9. Fasciotti M, Pereira Netto AD. Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS. Talanta. 2010;81:1116–25. https://doi.org/10.1016/j.talanta.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  10. European Comission. Honey market presentation. Agriculture and Rural Development.

  11. Ben Ayed R, Ben Hassen H, Ennouri K, Ben Marzoug R, Rebai A. OGDD (Olive Genetic Diversity Database): a microsatellite markers’ genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability. Database (Oxford). 2016;2016:bav090. https://doi.org/10.1093/database/bav090.

    Article  CAS  Google Scholar 

  12. Barranco D, Cimato A, Fiorino P, Rallo L, Touzani A, Castañeda C, et al. World catalogue of olive varieties. Int Olive Oil Council. 2000;2000:360.

    Google Scholar 

  13. Martos I, Ferreres F, Tomás-Barberán FA. Identification of flavonoid markers for the botanical origin of Eucalyptus honey. J Agric Food Chem. 2000;48:1498–502. https://doi.org/10.1021/jf991166q.

    Article  CAS  PubMed  Google Scholar 

  14. Jandrić Z, Frew RD, Fernandez-Cedi LN, Cannavan A. An investigative study on discrimination of honey of various floral and geographical origins using UPLC-QToF MS and multivariate data analysis. Food Control. 2017;72:189–97. https://doi.org/10.1016/j.foodcont.2015.10.010.

    Article  CAS  Google Scholar 

  15. Alonso-Rebollo A, Ramos-Gómez S, Busto MD, Ortega N. Development and optimization of an efficient qPCR system for olive authentication in edible oils. Food Chem. 2017;232:827–35. https://doi.org/10.1016/j.foodchem.2017.04.078.

    Article  CAS  PubMed  Google Scholar 

  16. Schievano E, Stocchero M, Zuccato V, Conti I, Piana L. NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral marker. Food Chem. 2019;288:96–101. https://doi.org/10.1016/j.foodchem.2019.02.062.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Li QX. Chemical composition, characterization, and differentiation of honey botanical and geographical origins. Adv Food Nutr Res. 2011;62:89–137. https://doi.org/10.1016/B978-0-12-385989-1.00003-X.

    Article  CAS  PubMed  Google Scholar 

  18. El Sohaimy SA, Masry S, Shehata MG. Physicochemical characteristics of honey from different origins. Ann Agric Sci. 2015;60:279–87. https://doi.org/10.1016/j.aoas.2015.10.015.

    Article  Google Scholar 

  19. Shi J, Yuan D, Hao S, Wang H, Luo N, Liu J, et al. Stimulated Brillouin scattering in combination with visible absorption spectroscopy for authentication of vegetable oils and detection of olive oil adulteration. Spectrochim Acta, Part A. 2019;206:320–7. https://doi.org/10.1016/j.saa.2018.08.031.

    Article  CAS  Google Scholar 

  20. Hu R, He T, Zhang Z, Yang Y, Liu M. Safety analysis of edible oil products via Raman spectroscopy. Talanta. 2019;191:324–32. https://doi.org/10.1016/j.talanta.2018.08.074.

    Article  CAS  PubMed  Google Scholar 

  21. Gómez-Caravaca AM, Maggio RM, Cerretani L. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Anal Chim Acta. 2016;913:1–21. https://doi.org/10.1016/j.aca.2016.01.025.

    Article  CAS  PubMed  Google Scholar 

  22. Monfreda M, Gobbi L, Grippa A. Blends of olive oil and seeds oils: characterisation and olive oil quantification using fatty acids composition and chemometric tools. Part II. Food Chem. 2014;145:584–92. https://doi.org/10.1016/j.foodchem.2013.07.141.

    Article  CAS  PubMed  Google Scholar 

  23. de La Mata P, Dominguez-Vidal A, Bosque-Sendra JM, Ruiz-Medina A, Cuadros-Rodríguez L, Ayora-Cañada MJ. Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control. 2012;23:449–55. https://doi.org/10.1016/j.foodcont.2011.08.013.

    Article  CAS  Google Scholar 

  24. Dais P, Hatzakis E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review. Anal Chim Acta. 2013;765:1–27. https://doi.org/10.1016/j.aca.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  25. Parker T, Limer E, Watson AD, Defernez M, Williamson D, Kemsley EK. 60 MHz 1H NMR spectroscopy for the analysis of edible oils. Trends Anal Chem. 2014;57:147–58. https://doi.org/10.1016/j.trac.2014.02.006.

    Article  CAS  Google Scholar 

  26. Gan Z, Yang Y, Li J, Wen X, Zhu M, Jiang Y, et al. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. Anal Bioanal Chem. 2016;178:151–8. https://doi.org/10.1016/j.jfoodeng.2016.01.016.

    Article  CAS  Google Scholar 

  27. Gerhardt N, Birkenmeier M, Sanders D, Rohn S, Weller P. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal Bioanal Chem. 2017;409:3933–42. https://doi.org/10.1007/s00216-017-0338-2.

    Article  CAS  PubMed  Google Scholar 

  28. Gerhardt N, Birkenmeier M, Schwolow S, Rohn S, Weller P. Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Anal Chem. 2018;90:1777–85. https://doi.org/10.1021/acs.analchem.7b03748.

    Article  CAS  PubMed  Google Scholar 

  29. Gerhardt N, Schwolow S, Rohn S, Pérez-Cacho PR, Galán-Soldevilla H, Arce L, et al. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: comparison of different processing approaches by LDA, kNN, and SVM. Food Chem. 2019;278:720–8. https://doi.org/10.1016/j.foodchem.2018.11.095.

    Article  CAS  PubMed  Google Scholar 

  30. Kasprzyk I, Depciuch J, Grabek-Lejko D, Parlinska-Wojtan M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control. 2018;84:33–40. https://doi.org/10.1016/j.foodcont.2017.07.015.

    Article  CAS  Google Scholar 

  31. Jiménez-Carvelo AM, Osorio MT, Koidis A, González-Casado A, Cuadros-Rodríguez L. Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT Food Sci Technol. 2017;86:174–84. https://doi.org/10.1016/j.lwt.2017.07.050.

    Article  CAS  Google Scholar 

  32. Merchak N, Rizk T, Silvestre V, Remaud GS, Bejjani J, Akoka S. Olive oil characterization and classification by 13C NMR with a polarization transfer technique: a comparison with gas chromatography and 1H NMR. Food Chem. 2018;245:717–23. https://doi.org/10.1016/j.foodchem.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  33. Longobardi F, Ventrella A, Napoli C, Humpfer E, Schütz B, Schäfer H, et al. Classification of olive oils according to geographical origin by using 1H NMR fingerprinting combined with multivariate analysis. Food Chem. 2012;130:177–83. https://doi.org/10.1016/j.foodchem.2011.06.045.

    Article  CAS  Google Scholar 

  34. Ferreiro-González M, Espada-Bellido E, Guillén-Cueto L, Palma M, Barroso CG, Barbero GF. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta. 2018;188:288–92. https://doi.org/10.1016/j.talanta.2018.05.095.

    Article  CAS  PubMed  Google Scholar 

  35. Dankowska A, Małecka M, Kowalewski W. Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis. Grasas Aceites. 2013;64:425–31. https://doi.org/10.3989/gya.012613.

    Article  CAS  Google Scholar 

  36. Frankel EN, Mailer RJ, Wang SC, Shoemaker CF, Guinard J-X, Flynn JD, Sturzenberger ND. Evaluation of extra-virgin olive oil sold in California: report. UCDavis Olive Center, Davis; 2011.

  37. Ruiz-Samblás C, Marini F, Cuadros-Rodríguez L, González-Casado A. Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools. J Chromatogr B. 2012. https://doi.org/10.1016/j.jchromb.2012.01.026.

  38. Fragaki G, Spyros A, Siragakis G, Salivaras E, Dais P. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. J Agric Food Chem. 2005;910:71–7. https://doi.org/10.1021/jf040279t.

    Article  CAS  Google Scholar 

  39. Borràs E, Ferré J, Boqué R, Mestres M, Aceña L, Busto O. Data fusion methodologies for food and beverage authentication and quality assessment - a review. Anal Chim Acta. 2015;891:1–14. https://doi.org/10.1016/j.aca.2015.04.042.

    Article  CAS  PubMed  Google Scholar 

  40. Bro R. PARAFAC. Tutorial and applications. Chemom Intell Lab Syst. 1997;38:149–71. https://doi.org/10.1016/S0169-7439(97)00032-4.

    Article  CAS  Google Scholar 

  41. Kroonenberg PM, ten Berge J. The equivalence of Tucker3 and Parafac models with two components. Chemom Intell Lab Syst. 2011;106:21–6. https://doi.org/10.1016/j.chemolab.2010.05.022.

    Article  CAS  Google Scholar 

  42. Kuncheva LI. Combining pattern classifiers: methods and algorithms. 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc; 2004.

    Book  Google Scholar 

  43. Geurts BP, Engel J, Rafii B, Blanchet L, Suppers A, Szymańska E, et al. Improving high-dimensional data fusion by exploiting the multivariate advantage. Chemom Intell Lab Syst. 2016;156:231–40. https://doi.org/10.1016/j.chemolab.2016.05.010.

    Article  CAS  Google Scholar 

  44. Ballabio D, Robotti E, Grisoni F, Quasso F, Bobba M, Vercelli S, et al. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chem. 2018;266:79–89. https://doi.org/10.1016/j.foodchem.2018.05.084.

    Article  CAS  PubMed  Google Scholar 

  45. Sales C, Cervera MI, Gil R, Portolés T, Pitarch E, Beltran J. Quality classification of Spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach. Food Chem. 2017;216:365–73. https://doi.org/10.1016/j.foodchem.2016.08.033.

    Article  CAS  PubMed  Google Scholar 

  46. Procida G, Cichelli A, Lagazio C, Conte LS. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches. J Sci Food Agric. 2016;96:311–8. https://doi.org/10.1002/jsfa.7096.

    Article  CAS  PubMed  Google Scholar 

  47. Manyi-Loh CE, Ndip RN, Clarke AM. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int J Mol Sci. 2011;12:9514–32. https://doi.org/10.3390/ijms12129514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li J, Yuan H, Yao Y, Hua J, Yang Y, Dong C, et al. Rapid volatiles fingerprinting by dopant-assisted positive photoionization ion mobility spectrometry for discrimination and characterization of green tea aromas. Talanta. 2019;191:39–45. https://doi.org/10.1016/j.talanta.2018.08.039.

    Article  CAS  PubMed  Google Scholar 

  49. Garrido-Delgado R, Arce L, Valcárcel M. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils. Anal Bioanal Chem. 2012;402:489–98. https://doi.org/10.1007/s00216-011-5328-1.

    Article  CAS  PubMed  Google Scholar 

  50. Garrido-Delgado R, Dobao-Prieto MM, Arce L, Valcárcel M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 2015;187:572–9. https://doi.org/10.1016/j.foodchem.2015.04.082.

    Article  CAS  PubMed  Google Scholar 

  51. Eriksson L Multi- and megavariate data analysis: basic principles and applications. third revised edition. Umetrics Academy - training in multivariate technology. Umetrics: Umeå; 2013.

  52. Tewari J, Irudayaraj J. Quantification of saccharides in multiple floral honeys using Fourier transform infrared microattenuated total reflectance spectroscopy. J Agric Food Chem. 2004;52:3237–43. https://doi.org/10.1021/jf035176+.

    Article  CAS  PubMed  Google Scholar 

  53. Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 2015;170:234–40. https://doi.org/10.1016/j.foodchem.2014.08.040.

    Article  CAS  PubMed  Google Scholar 

  54. Kiritsakis AK. Flavor components of olive oil - a review. J Amer Oil Chem Soc. 1998;75:673–81. https://doi.org/10.1007/s11746-998-0205-6.

    Article  CAS  Google Scholar 

  55. Angerosa F, Servili M, Selvaggini R, Taticchi A, Esposto S, Montedoro G. Volatile compounds in virgin olive oil: occurrence and their relationship with the quality. J Chromatogr A. 2004;1054:17–31. https://doi.org/10.1016/j.chroma.2004.07.093.

    Article  CAS  PubMed  Google Scholar 

  56. Angerosa F, Basti C, Vito R. Virgin olive oil volatile compounds from lipoxygenase pathway and characterization of some Italian cultivars. J Agric Food Chem. 1999;47:836–9. https://doi.org/10.1021/jf980911g.

    Article  CAS  PubMed  Google Scholar 

  57. Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 2010;118:78–83. https://doi.org/10.1016/j.foodchem.2009.04.092.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Coop Switzerland and the Chemical and Veterinary Surveillance Laboratories (CVUA) Karlsruhe and Freiburg for supplying authentic olive oil and honey samples and supporting data from pollen and sugar analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Weller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwolow, S., Gerhardt, N., Rohn, S. et al. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—is it worth to go the extra mile?. Anal Bioanal Chem 411, 6005–6019 (2019). https://doi.org/10.1007/s00216-019-01978-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01978-w

Keywords

Navigation