Skip to main content
Log in

Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The rapid detection of bacterial strains has become a major topic thoroughly discussed across the biomedical field. Paired with the existence of nosocomial pathogen agents that imply extreme medical and financial challenges throughout diagnosis and treatment, the development of rapid and easy-to-use sensing devices has gained an increased amount of attention. Moreover, antibiotic resistance considered by World Health Organization as one of the “biggest threats to global health, food security, and development today” enables this topic as high priority. Pseudomonas aeruginosa, one of the most ubiquitous bacterial strains, has various quorum-sensing systems that are a direct cause of their virulence. One of them is represented by pyocyanin, a blue pigment with electroactive properties that is synthesized from early stages of bacterial colonization. Thus, the sensitive detection of this biomarker could enable a personalized and efficient therapy. It was achieved with the development of an electrochemical sensor based on a thermosensitive polymer, modified with Au/Ag nanoalloy for the rapid and accurate detection of pyocyanin, a virulence biomarker of Pseudomonas aeruginosa. The sensor displayed a linear range from 0.12 to 25 μM, and a limit of detection of 0.04 μM (signal/noise = 3). It was successfully tested in real samples spiked with the target analyte without any pretreatment other than a dilution step. The detection of pyocyanin with high recovery in whole blood in a time frame of 5–10 min from the moment of collection was performed with this electrochemical sensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Webster TA, Sismaet HJ, Conte JL, Chan I ping J, Goluch ED. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens Bioelectron. 2014;60:265–70.

    Article  CAS  Google Scholar 

  2. Dong D, Zou D, Liu H, Yang Z, Huang S, Liu N, et al. Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China. Front Microbiol. 2015;6:1100.

    PubMed  PubMed Central  Google Scholar 

  3. Workentine M, Poonja A, Waddell B, Duong J, Storey DG, Gregson D, et al. Development and validation of a PCR assay to detect the prairie epidemic strain of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol. 2016;54(2):489–91.

    Article  CAS  Google Scholar 

  4. Ciui B, Tertiş M, Cernat A, Sǎndulescu R, Wang J, Cristea C. Finger-based printed sensors integrated on a glove for on-site screening of Pseudomonas aeruginosa virulence factors. Anal Chem. 2018;90(12):7761–8.

    Article  CAS  Google Scholar 

  5. Gandouzi I, Tertis M, Cernat A, Bakhrouf A, Coros M, Pruneanu S, et al. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry. 2018;120:94–103.

    Article  CAS  Google Scholar 

  6. Cernat A, Tertis M, Gandouzi I, Bakhrouf A, Suciu M, Cristea C. Electrochemical sensor for the rapid detection of Pseudomonas aeruginosa siderophore based on a nanocomposite platform. Electrochem Commun. 2018;88:5–9.

    Article  CAS  Google Scholar 

  7. Lau GW, Hassett DJ, Ran H, Kong F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med. 2004;10(12):599–606.

    Article  CAS  Google Scholar 

  8. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol. 2006;61(5):1308–21.

    Article  CAS  Google Scholar 

  9. Sismaet HJ, Pinto AJ, Goluch ED. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens Bioelectron. 2017;97:65–9.

    Article  CAS  Google Scholar 

  10. Seviour T, Doyle LE, Lauw SJL, Hinks J, Rice SA, Nesatyy VJ, et al. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun. 2015;51(18):3789–92.

    Article  CAS  Google Scholar 

  11. Jayaseelan S, Ramaswamy D, Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol. 2014;30(4):1159–68.

    Article  CAS  Google Scholar 

  12. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother. 2005;49(4):1306–11.

    Article  CAS  Google Scholar 

  13. Martínez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008;47(12):1526–33.

    Article  Google Scholar 

  14. Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5(1):4462.

    Article  CAS  Google Scholar 

  15. Alatraktchi FA, Andersen SB, Johansen HK, Molin S, Svendsen WE. Fast selective detection of pyocyanin using cyclic voltammetry. Sensors (Switzerland). 2016;16(3):408–18.

    Article  Google Scholar 

  16. Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J. Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry. 2010;77(2):114–9.

    Article  CAS  Google Scholar 

  17. Alatraktchi FA, Johansen HK, Molin S, Svendsen WE. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine. 2016;11(16):2185–95.

    Article  CAS  Google Scholar 

  18. Alatraktchi FAZ, Noori JS, Tanev GP, Mortensen J, Dimaki M, Johansen HK, et al. Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa. PLoS One. 2018;13(3):1–9.

    Article  Google Scholar 

  19. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron. 2019;124–125:143–9.

    Article  Google Scholar 

  20. An L, Zhao TS, Zeng L. Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells. Appl Energy. 2013;109:67–71.

    Article  CAS  Google Scholar 

  21. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A. Agar-based films for application as polymer electrolytes. Electrochim Acta. 2010;55(4):1455–9.

    Article  CAS  Google Scholar 

  22. Moon WG, Kim GP, Lee M, Song HD, Yi J. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors. ACS Appl Mater Interfaces. 2015;7(6):3503–11.

    Article  CAS  Google Scholar 

  23. Tani Y, Tanaka K, Yabutani T, Mishima Y, Sakuraba H, Ohshima T, et al. Development of a D-amino acids electrochemical sensor based on immobilization of thermostable D-proline dehydrogenase within agar gel membrane. Anal Chim Acta. 2008;619(2):215–20.

    Article  CAS  Google Scholar 

  24. Li Y, Wang Z, Sun L, Liu L, Xu C, Kuang H. Nanoparticle-based sensors for food contaminants. TrAC Trends Anal Chem. 2019;113:74–83.

    Article  Google Scholar 

  25. Thanh TD, Balamurugan J, Hien H Van, Kim NH, Lee JH. A novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst. Biosens Bioelectron 2017;96:186–193.

  26. Tertiş M, Florea A, Adumitrăchioaie A, Cernat A, Bogdan D, Barbu-Tudoran L, et al. Detection of dopamine by a biomimetic electrochemical sensor based on polythioaniline-bridged gold nanoparticles. Chempluschem. 2017;82(4):561–9.

    Article  Google Scholar 

  27. Tertiș M, Cernat A, Lacatiș D, Florea A, Bogdan D, Suciu M, et al. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem Commun. 2017;75:43–7.

    Article  Google Scholar 

  28. Muller M. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med. 2006;41(11):1670–7.

    Article  CAS  Google Scholar 

  29. Yang Y, Yu YY, Wang YZ, Zhang CL, Wang JX, Fang Z, et al. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens Bioelectron. 2017;98:338–44.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI2017-0407 (INTELMAT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florin Graur or Cecilia Cristea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cernat, A., Canciu, A., Tertis, M. et al. Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin. Anal Bioanal Chem 411, 3829–3838 (2019). https://doi.org/10.1007/s00216-019-01857-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01857-4

Keywords

Navigation