Skip to main content
Log in

Detection and fragmentation of doubly charged peptide ions in MALDI-Q-TOF-MS by ion mobility spectrometry for improved protein identification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Today, bottom-up protein identification in MALDI-MS is based on employing singly charged peptide ions, which are predominantly formed in the ionization process. However, peptide mass fingerprinting (PMF) with subsequent tandem MS confirmation using these peptide ions is often hampered due to the lower quality of fragment ion mass spectra caused by the higher collision energy necessary for fragmenting singly protonated peptides. Accordingly, peptide ions of higher charge states would be of high interest for analytical purposes, but they are usually not detected in MALDI-MS experiments as they overlap with singly charged matrix clusters and peptide ions. However, when utilizing ion mobility spectrometry (IMS), doubly charged peptide ions can be actively used by separating them from the singly protonated peptides, visualized, and selectively targeted for tandem MS experiments. The generated peptide fragment ion spectra can be used for a more confident protein identification using PMF with tandem MS confirmation, as most doubly protonated peptide ions yield fragment ion mass spectra of higher quality compared to tandem mass spectra of the corresponding singly protonated precursor ions. Mascot protein scores can be increased by approximately 50% when using tandem mass spectra of doubly charged peptide ions, with ion scores up to six times higher compared with ion scores of tandem mass spectra from singly charged precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.

    Article  CAS  PubMed  Google Scholar 

  2. Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev. 2006;25:663–82.

    Article  CAS  PubMed  Google Scholar 

  3. Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010;28:695–709.

    Article  CAS  PubMed  Google Scholar 

  4. Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2007;1:2856–60.

    Article  CAS  Google Scholar 

  5. Jaskolla TW, Karas M. Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom. 2011;22:976–88.

    Article  CAS  PubMed  Google Scholar 

  6. Alves S, Fournier F, Afonso C, Wind F, Tabet JC. Gas-phase ionization/desolvation processes and their effect on protein charge state distribution under matrix-assisted laser desorption/ionization conditions. Eur J Mass Spectrom. 2006;12:369–83.

  7. Kononikhin AS, Nikolaev EN, Frankevich V, Zenobi R. Letter: multiply charged ions in matrix-assisted laser desorption/ionization generated from electrosprayed sample layers. Eur J Mass Spectrom. 2005;11:257–9.

    Article  CAS  Google Scholar 

  8. Liu ZL, Schey KL. Fragmentation of multiply-charged intact protein ions using MALDI TOF-TOF mass spectrometry. J Am Soc Mass Spectrom. 2008;19:231–8.

    Article  CAS  PubMed  Google Scholar 

  9. Koch A, Schnapp A, Soltwisch J, Dreisewerd K. Generation of multiply charged peptides and proteins from glycerol-based matrices using lasers with ultraviolet, visible and near-infrared wavelengths and an atmospheric pressure ion source. Int J Mass Spectrom. 2017;416:61–70.

    Article  CAS  Google Scholar 

  10. König S, Kollas O, Dreisewerd K. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry. Anal Chem. 2007;79:5484–8.

    Article  CAS  PubMed  Google Scholar 

  11. Leisner A, Rohlfing A, Berkenkamp S, Hillenkamp F, Dreisewerd K. Infrared laser post-ionization of large biomolecules from an IR-MALD(I) plume. J Am Soc Mass Spectrom. 2004;15:934–41.

    Article  CAS  PubMed  Google Scholar 

  12. Ryumin P, Brown J, Morris M, Cramer R. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS. Methods. 2016;104:11–20.

    Article  CAS  PubMed  Google Scholar 

  13. Ryumin P, Brown J, Morris M, Cramer R. Protein identification using a nanoUHPLC-AP-MALDI MS/MS workflow with CID of multiply charged proteolytic peptides. Int J Mass Spectrom. 2017;416:20–8.

    Article  CAS  Google Scholar 

  14. Cramer R, Pirkl A, Hillenkamp F, Dreisewerd K. Liquid AP-UV-MALDI enables stable ion yields of multiply charged peptide and protein ions for sensitive analysis by mass spectrometry. Angew Chem Int Ed. 2013;52:2364–7.

    Article  CAS  Google Scholar 

  15. Jaskolla TW, Lehmann W-D, Karas M. 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. PNAS. 2008;105:12200–5.

    Article  PubMed  Google Scholar 

  16. Jaskolla TW, Papasotiriou DG, Karas M. Comparison between the matrices alpha-cyano-4-hydroxycinnamic acid and 4-chloro-alpha-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry. J Proteome Res. 2009;8:3588–97.

    Article  CAS  PubMed  Google Scholar 

  17. Soltwisch J, Jaskolla TW, Hillenkamp F, Karas M, Dreisewerd K. Ion yields in UV-MALDI mass spectrometry as a function of excitation laser wavelength and optical and physico-chemical properties of classical and halogen-substituted MALDI matrixes. Anal Chem. 2012;84:6567–76.

    Article  CAS  PubMed  Google Scholar 

  18. Wiegelmann M, Soltwisch J, Jaskolla TW, Dreisewerd K. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry. Anal Bioanal Chem. 2013;405:6925–32.

    Article  CAS  PubMed  Google Scholar 

  19. Cramer R, Corless S. The nature of collision-induced dissociation processes of doubly protonated peptides: comparative study for the future use of matrix-assisted laser desorption/ionization on a hybrid quadrupole time-of-flight mass spectrometer in proteomics. Rapid Commun Mass Spectrom. 2001;15:2058–66.

    Article  CAS  PubMed  Google Scholar 

  20. Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–48.

    Article  CAS  PubMed  Google Scholar 

  21. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst. 2015;140:1376–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE. Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto, Calif). 2008;1:293–327.

    Article  CAS  Google Scholar 

  23. Seo J, Hoffmann W, Warnke S, Bowers MT, Pagel K, von Helden G. Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed. 2016;55:14173–6.

    Article  CAS  Google Scholar 

  24. Pagel K, Harvey DJ. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans. Anal Chem. 2013;85:5138–45.

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann J, Hahm HS, Seeberger PH, Pagel K. Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature. 2015;526:241–4.

    Article  CAS  PubMed  Google Scholar 

  26. Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, et al. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom. 2010;21:338–47.

    Article  CAS  PubMed  Google Scholar 

  27. Inutan ED, Wager-Miller J, Narayan SB, Mackie K, Trimpin S. The potential for clinical applications using a new ionization method combined with ion mobility spectrometry-mass spectrometry. Int J Ion Mobil Spectrom. 2013;16:145–59.

    Article  CAS  Google Scholar 

  28. Distler U, Kuharev J, Navarro P, Tenzer S. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc. 2016;11:795–812.

    Article  CAS  PubMed  Google Scholar 

  29. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom. 2007;261:1–12.

    Article  CAS  Google Scholar 

  30. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993;90:5011–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mann M, Højrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993;22:338–45.

    Article  CAS  PubMed  Google Scholar 

  32. Richter N, Gröger H, Hummel W. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. Appl Microbiol Biotechnol. 2011;89:79–89.

    Article  CAS  PubMed  Google Scholar 

  33. Sladkova K, Houska J, Havel J. Laser desorption ionization of red phosphorus clusters and their use for mass calibration in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:3114–8.

    Article  CAS  PubMed  Google Scholar 

  34. Inutan ED, Wang BX, Trimpin S. Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions. Anal Chem. 2011;83:678–84.

    Article  CAS  PubMed  Google Scholar 

  35. Kraußer M, Winkler T, Richter N, Dommer S, Fingerhut A, Hummel W, et al. Combination of C=C bond formation by Wittig reaction and enzymatic C=C bond reduction in a one-pot process in water. ChemCatChem. 2011;3:293–6.

    Article  CAS  Google Scholar 

  36. Burda E, Reß T, Winkler T, Giese C, Kostrov X, Huber T, et al. Highly enantioselective reduction of α-methylated nitroalkenes. Angew Chem Int Ed. 2013;52:9323–6.

    Article  CAS  Google Scholar 

  37. Reß T, Hummel W, Hanlon SP, Iding H, Gröger H. The organic-synthetic potential of recombinant ene reductases: substrate-scope evaluation and process optimization. ChemCatChem. 2015;7:1302–11.

    Article  CAS  Google Scholar 

  38. Biermann M, Gruß H, Hummel W, Gröger H. Guerbet alcohols: from processes under harsh conditions to synthesis at room temperature under ambient pressure. ChemCatChem. 2016;8:895–9.

    Article  CAS  Google Scholar 

  39. Biermann M, Bakonyi D, Hummel W, Gröger H. Design of recombinant whole-cell catalysts for double reduction of C=C and C=O bonds in enals and application in the synthesis of Guerbet alcohols as industrial bulk chemicals for lubricants. Green Chem. 2017;19:405–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Winkler for the preparation of ene reductase.

Funding

J.S. and H.G. received generous support from the German Research Foundation (DFG; grant number: INST 215/484-1 FUGG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens Sproß or Harald Gröger.

Ethics declarations

Conflict of interest

Jens Sproß and Harald Gröger declare no conflict of interest. Alexander Muck is an employee of Waters Corp.

Additional information

Published in the topical collection Close-Up of Current Developments in Ion Mobility Spectrometry with guest editor Gérard Hopfgartner.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sproß, J., Muck, A. & Gröger, H. Detection and fragmentation of doubly charged peptide ions in MALDI-Q-TOF-MS by ion mobility spectrometry for improved protein identification. Anal Bioanal Chem 411, 6275–6285 (2019). https://doi.org/10.1007/s00216-019-01578-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01578-8

Keywords

Navigation