Skip to main content

Advertisement

Log in

Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Capillary zone electrophoresis (CZE) based on electrophoretic mobility in the liquid phase and ion mobility spectrometry (IMS) based on mobilities in the gas phase are both powerful techniques for the separation of complex samples. Protein glycosylation is one of the most common post-translational modifications associated with a wide range of biological functions and human diseases. Due to their high structural variability, the analysis of glycans still represents a challenging task. In this work, the first on-line coupling of CZE with drift tube ion mobility-mass spectrometry (DTIM-MS) has been perfomed to further improve separation capabilities for the analysis of native and 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled N-glycans. In this way, a complexity of glycan signals was revealed which could not be resolved by these techniques individually, shown for both native and APTS-labeled glycans. Each individual glycan signal separated in CZE exhibited an unexpectedly high number of peaks observed in the IMS dimension. This observation could potentially be explained by the presence of isomeric forms, including different linkages, and/or gas-phase conformers. In addition, the type of sialic acid attached to glycans has a significant impact on the obtained drift time profile. Furthermore, the application of α2-3 neuraminidase enabled the partial assignment of peaks in the arrival time distribution considering their sialic acid linkages (α2-3/α2-6). This work is a showcase for the high potential of CZE-DTIM-MS, which is expected to find various applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGP:

α-1-Acid glycoprotein

APTS:

8-Aminopyrene-1,3,6-trisulfonic acid

ATD:

Arrival time distribution

BGE:

Background electrolyte

CE:

Capillary electrophoresis

CZE:

Capillary zone electrophoresis

DT:

Drift time

DTIM-MS:

Drift tube ion mobility-mass spectrometry

ESI:

Electrospray ionization

FAIMS-MS:

High-field asymmetric waveform ion mobility spectrometry mass spectrometry

HILIC:

Hydrophilic interaction chromatography

IMS:

Ion mobility spectrometry

mAb:

Monoclonal antibody

MS:

Mass spectrometry

NeuNAc:

N-Acetylneuraminic acid

NeuNGc:

N-Glycolylneuraminic acid

SA:

Sialic acid

SL:

Sheath liquid

TOF-MS:

Time-of-flight mass spectrometry

TWIM-MS:

Traveling wave ion mobility-mass spectrometry

References

  1. Williams JP, Grabenauer M, Holland RJ, Carpenter CJ, Wormald MR, Giles K, et al. Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int J Mass Spectrom. 2010;298(1–3):119–27.

    Article  CAS  Google Scholar 

  2. Rudd PM. Glycosylation and the immune system. Science. 2001;291(5512):2370–6.

    Article  CAS  Google Scholar 

  3. Montreuil J, Vliegenthart JFG, Glycoproteins SH. New comprehensive biochemistry, vol. 29a. Amsterdam: Elsevier; 1995.

    Google Scholar 

  4. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681.

    Article  Google Scholar 

  5. Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs. 2016;8(2):205–15.

    Article  CAS  Google Scholar 

  6. Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev. 1996;96(2):683–720.

    Article  CAS  Google Scholar 

  7. Wormald MR, Petrescu AJ, Pao Y-L, Glithero A, Elliott T, Dwek RA. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev. 2002;102(2):371–86.

    Article  CAS  Google Scholar 

  8. Sanchez-De Melo I, Grassi P, Ochoa F, Bolivar J, García-Cózar FJ, Durán-Ruiz MC. N-glycosylation profile analysis of trastuzumab biosimilar candidates by normal phase liquid chromatography and MALDI-TOF MS approaches. J Proteome. 2015;127:225–33.

    Article  CAS  Google Scholar 

  9. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397(8):3457–81.

    Article  CAS  Google Scholar 

  10. Melmer M, Stangler T, Premstaller A, Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A. 2011;1218(1):118–23.

    Article  CAS  Google Scholar 

  11. Bunz S-C, Cutillo F, Neusüß C. Analysis of native and APTS-labeled N-glycans by capillary electrophoresis/time-of-flight mass spectrometry. Anal Bioanal Chem. 2013;405(25):8277–84.

    Article  CAS  Google Scholar 

  12. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH. Ion mobility-mass spectrometry. J Mass Spectrom. 2008;43(1):1–22.

    Article  CAS  Google Scholar 

  13. Hofmann J, Pagel K. Glycan analysis by ion mobility-mass spectrometry. Angew Chem Int Ed. 2017;56(29):8342–9.

    Article  CAS  Google Scholar 

  14. Aizpurua-Olaizola O, Sastre Toraño J, Falcon-Perez JM, Williams C, Reichardt N, Boons G-J. Mass spectrometry for glycan biomarker discovery. TrAC Trends Anal Chem. 2018;100:7–14.

    Article  CAS  Google Scholar 

  15. Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, et al. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Ann Rev Anal Chem. 2017;10(1):71–92.

    Article  CAS  Google Scholar 

  16. Li J, Purves RW, Richards JC. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Anal Chem. 2004;76(16):4676–83.

    Article  CAS  Google Scholar 

  17. Mironov GG, Okhonin V, Khan N, Clouthier CM, Berezovski MV. Conformational dynamics of DNA G-quadruplex in solution studied by kinetic capillary electrophoresis coupled on-line with mass spectrometry. Chem Open. 2014;3(2):58–64.

    CAS  Google Scholar 

  18. Mironov GG, Clouthier CM, Akbar A, Keillor JW, Berezovski MV. Simultaneous analysis of enzyme structure and activity by kinetic capillary electrophoresis–MS. Nat Chem Biol. 2016;12(11):918–22.

    Article  CAS  Google Scholar 

  19. Hallen RW, Shumate CB, Siems WF, Tsuda T, Hill HH. Preliminary investigation of ion mobility spectrometry after capillary electrophoretic introduction. J Chromatogr. 1989;480:233–45.

    Article  CAS  Google Scholar 

  20. Nakano M. Detailed structural features of glycan chains derived from 1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology. 2004;14(5):431–41.

    Article  CAS  Google Scholar 

  21. Yamaguchi Y, Nishima W, Re S, Sugita Y. Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Commun Mass Spectrom. 2012;26(24):2877–84.

    Article  CAS  Google Scholar 

  22. Struwe WB, Baldauf C, Hofmann J, Rudd PM, Pagel K. Ion mobility separation of deprotonated oligosaccharide isomers – evidence for gas-phase charge migration. Chem Commun. 2016;52(83):12353–6.

    Article  CAS  Google Scholar 

  23. Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, et al. An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem. 2017;89(17):9048–55.

    Article  CAS  Google Scholar 

  24. Cumming DA, Hellerqvist CG, Harris-Brandts M, Michnick SW, Carver JP, Bendiak B. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 1989;28:6500–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Neusüß.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Close-Up of Current Developments in Ion Mobility Spectrometry with guest editor Gérard Hopfgartner.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jooß, K., Meckelmann, S.W., Klein, J. et al. Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans. Anal Bioanal Chem 411, 6255–6264 (2019). https://doi.org/10.1007/s00216-018-1515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1515-7

Keywords

Navigation