Skip to main content
Log in

Ionic liquid matrices for MALDI mass spectrometry of lignin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the study of lignin is still extremely limited due to its low ionization efficiency. We have developed an approach for obtaining high-intensity MALDI mass spectra of lignin, based on the use of ionic liquids as matrices. Thirty-two ionic liquids consisting of large nitrogen-containing cations and anions of aromatic acids, traditionally used as crystalline matrices, were tested. It was established that ionic liquids based on N,N-diisopropyl-N-ethylammonium, N-isopropyl-N-methyl-N-tert-butylammonium, 3-aminoquinolinium, pyridinium, and 1-methylimidazolium cations and anions of ferulic, α-cyanohydroxycinnamic, and 2,5-dihydroxybenzoic acids as MALDI matrices provided high efficiency of lignin desorption/ionization with generation of singly charged protonated molecules of its oligomers. The use of such matrices in combination with the MALDI quadrupole ion trap–time-of-flight technique allows high-intensity mass spectra of lignin to be obtained without interferences from the matrix in the molecular weight range up to 3 kDa, adequately reflecting the molecular mass characteristics of lignin preparations. Using ionic liquid matrices, MS2 and MS3 MALDI mass spectra of lignins for various precursor ions were first obtained, including in the region of large (> 2 kDa) molecular weights. Differences in tandem mass spectra of coniferous and deciduous lignins, reflecting the structural features of corresponding oligomers were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hillenkamp F, Peter-Katalinic JA. Practical guide to MALDI-MS. instrumentation, methods and applications. Weinheim: Wiley-VCH; 2007. 345 p

    Google Scholar 

  2. Cole RB. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: Wiley; 2010. 847 p

    Book  Google Scholar 

  3. Banoub J, Delmas G-H, Joly N, Mackenzie G, Cachet N, Benjelloun-Mlayah B, et al. A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J Mass Spectrom. 2015;50:5–48.

    Article  CAS  Google Scholar 

  4. Reale S, Di Tullio A, Spreti N, De Angelis F. Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrom Rev. 2004;23(2):87–126.

    Article  CAS  Google Scholar 

  5. Kosyakov DS, Ul’yanovskii NV, Anikeenko EA, Gorbova NS. Negative ion mode atmospheric pressure ionization methods in lignin mass spectrometry: a comparative study. Rapid Commun Mass Spectrom. 2016;30:2099–108.

    Article  CAS  Google Scholar 

  6. Kosyakov DS, Ipatova EV, Krutov SM, Ul’yanovskii NV, Pikovskoi II. Study of products of the alkaline decomposition of hydrolysis lignin by atmospheric pressure photoionization high-resolution mass spectrometry. J Anal Chem. 2017;72(14):1396–403.

    Article  CAS  Google Scholar 

  7. Qi Y, Hempelmann R, Volmer DA. Shedding light on the structures of lignin compounds: photo-oxidation under artificial UV light and characterization by high resolution mass spectrometry. Anal Bioanal Chem. 2016;408(28):8203–10.

    Article  CAS  Google Scholar 

  8. Morreel K, Kim H, Lu F, Dima O, Akiyama T, Vanholme R, et al. Mass spectrometry-based fragmentation as an identification tool in lignomics. Anal Chem. 2010;82(19):8095–105.

    Article  CAS  Google Scholar 

  9. Morreel K, Dima O, Kim H, Lu F, Niculaes C, Vanholme R, et al. Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol. 2010;153(4):1464–78.

    Article  CAS  Google Scholar 

  10. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev. 2004;3:29–60.

    Article  CAS  Google Scholar 

  11. Metzger JO, Bicke C, Faix O, Tuszynski W, Angermann R, Karas M, et al. Matrix-assisted laser desorption mass spectrometry of lignins. Angew Chem Int Ed Engl. 1992;31(6):762–4.

    Article  Google Scholar 

  12. De Angelis F, Fregonese P, Veri F. Structural investigation of synthetic lignins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(10):1304–8.

    Article  Google Scholar 

  13. Srzić D, Martinović S, Paša Tolić LJ, Kezele N, Shevchenko SM, Klasinc L. Laser desorption Fourier-transform mass spectrometry of lignins. Rapid Commun Mass Spectrom. 1995;9:245–9.

    Article  Google Scholar 

  14. Bocchini P, Galletti GC, Seraglia R, Traldi P, Camarero S, Martinez AT. Matrix-assisted laser desorption/ionization mass spectrometry of natural and synthetic lignin. Rapid Commun Mass Spectrom. 1996;10(9):1144–7.

    Article  CAS  Google Scholar 

  15. Richel A, Vanderghem C, Simon M, Wathelet B, Paquot M. Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis. Anal Chem Insights. 2012;7:79–89.

    Article  CAS  Google Scholar 

  16. Mattinen M, Suortti T, Gosselink R, Argyropoulos DS, Evtuguin D, Suurnakki A, et al. Polymerization of different lignins by laccase. Bioresources. 2008;3(2):549–65.

    Google Scholar 

  17. Yoshioka K, Ando D, Watanabe T. A comparative study of matrix- and nano-assisted laser desorption/ionisation time-of-flight mass spectrometry of isolated and synthetic lignin. Phytochem Anal. 2011;23(3):248–53.

    Article  Google Scholar 

  18. Araújo P, Ferreira MS, de Oliveira DN, Pereira L, Sawaya ACHF, Catharino RR, et al. Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in eucalyptus. Anal Chem. 2014;86:3415–9.

    Article  Google Scholar 

  19. Kiyota E, Mazzafera P, Sawaya ACHF. Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatography−tandem mass spectrometry with a do-it-yourself oligomer database. Anal Chem. 2012;84:7015–20.

    Article  CAS  Google Scholar 

  20. Crank JA, Armstrong DW. Towards a second generation of ionic liquid matrices (ILMs) for MALDI-MS of peptides, proteins and carbohydrates. J Am Soc Mass Spectrom. 2009;20:1790–800.

    Article  CAS  Google Scholar 

  21. Armstrong DW, Zhang L, He L, Gross ML. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2001;73(15):3679–86.

    Article  CAS  Google Scholar 

  22. Tholey A, Heinzle E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry—applications and perspectives. Anal Bioanal Chem. 2006;386(1):24–37.

    Article  CAS  Google Scholar 

  23. Berthod A, Crank JA, Rundlett KL, Armstrong DW. A second-generation ionic liquid matrix-assisted laser desorption/ionization matrix for effective mass spectrometric analysis of biodegradable polymers. Rapid Commun Mass Spectrom. 2009;23(21):3409–22.

    Article  CAS  Google Scholar 

  24. Fukuyama Y, Nakaya S, Yamazaki Y, Tanaka K. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal Chem. 2008;80(6):2171–9.

    Article  CAS  Google Scholar 

  25. Watanabe M, Terasawa K, Kaneshiro K, Uchimura H, Yamamoto R, Fukuyama Y, et al. Improvement of mass spectrometry analysis of glycoproteins by MALDI-MS using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid. Anal Bioanal Chem. 2013;405:4289–93.

    Article  CAS  Google Scholar 

  26. Sekiya S, Taniguchi K, Tanaka K. On-target separation of analyte with 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix for matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:693–700.

    Article  CAS  Google Scholar 

  27. Serrano CA, Zhang Y, Yang J, Schug KA. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices. Rapid Commun Mass Spectrom. 2011;25(9):1152–8.

    Article  CAS  Google Scholar 

  28. Kosyakov DS, Ul’yanovskii NV, Sorokina EA, Gorbova NS. Optimization of sample preparation conditions in the study of lignin by MALDI mass spectrometry. J Anal Chem. 2014;69(14):1344–50.

    Article  CAS  Google Scholar 

  29. Pepper JM, Baylis PET, Adler E. The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Can J Chem. 1959;37(8):1241–8.

    Article  CAS  Google Scholar 

  30. Baumberger S, Abaecherli A, Fasching M, Gellerstedt G, Gosselink R, Hortling B, et al. Molar mass determination of lignins by size-exclusion chromatography: towards standardisation of the method. Holzforschung. 2007;61(4):459–68.

    Article  CAS  Google Scholar 

  31. Zakis GF. The functional analysis of lignins and their derivatives. Atlanta: TAPPI Press; 1994. 94 p

    Google Scholar 

  32. Papanastasiou D, Belgacem O, Montgomery H, Sudakov M, Raptakis EA. Quadrupole ion trap/time-of-flight mass spectrometer combined with a vacuum matrix-assisted laser desorption ionization source. In: March RE, Todd JFJ, editors. Practical aspects of ion trap mass spectrometry. Volume IV. Theory and instrumentation. Boca Raton: CRC Press; 2010. p. 793–824.

    Chapter  Google Scholar 

  33. Strohalm M, Kavan D, Novák P, Volný M, Havlíček V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010;82(11):4648–51.

    Article  CAS  Google Scholar 

  34. Lou X, van Dongen JLJ, Vekemans JAJM, Meijer EW. Matrix suppression and analyte suppression effects of quaternary ammonium salts in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an investigation of suppression mechanism. Rapid Commun Mass Spectrom. 2009;23(19):3077–82.

    Article  CAS  Google Scholar 

  35. Hunter EP, Lias SG. Evaluated gas phase Basicities and proton affinities of molecules: an update. J Phys Chem Ref Data. 1998;27(3):413–656.

    Article  CAS  Google Scholar 

  36. Breuker K, Knochenmuss R, Zenobi R. Gas-phase basicities of deprotonated matrix-assisted laser desorption/ionization matrix molecules. Int J Mass Spectrom. 1999;184:25–38.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under financial support of the Russian Science Foundation (Grant No. 18-73-10138) using the instrumentation of the Core Facility Center “Arktika” of Lomonosov Northern (Arctic) Federal University (RFMEFI59417X0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Kosyakov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosyakov, D.S., Anikeenko, E.A., Ul’yanovskii, N.V. et al. Ionic liquid matrices for MALDI mass spectrometry of lignin. Anal Bioanal Chem 410, 7429–7439 (2018). https://doi.org/10.1007/s00216-018-1353-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1353-7

Keywords

Navigation