Skip to main content
Log in

Toehold integrated molecular beacon system for a versatile non-enzymatic application

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A molecular beacon (MB) is an oligonucleotide hybridization probe with a hairpin-shaped structure that leads to specific and instantaneous nucleic acid hybridization, enabling a variety of applications. However, integration of additional module sequences interferes with the performance of MBs and increases the complexity of sequence design. Herein, we develop and characterize a toehold integrated molecular beacon (ToMB) strategy for nucleic acid hybridization, where the reaction rate can be flexibly regulated by a target-induced MB conformational switch. Using this basic mechanism, the ToMB is capable of identifying nucleic acids with high specificity and a wider linearity range compared with the conventional molecular beacon system. We further applied the ToMB to the construction of a hybridization chain reaction system and a basic OR logic gate VJHto explore its programmability and versatility. Our results strongly suggest that the novel ToMB can act as a powerful nano-module to construct universal and multifunctional biosensors or molecular computations.

Molecular beacon is employed as a flexible and switchable spacer to control the toehold-mediated strand displacement reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14(3):303–8. https://doi.org/10.1038/nbt0396-303.

    Article  CAS  PubMed  Google Scholar 

  2. Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang L, et al. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale. 2010;2(6):1021–6. https://doi.org/10.1039/b9nr00401g.

    Article  CAS  PubMed  Google Scholar 

  3. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. https://doi.org/10.1200/JCO.2012.45.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Connolly AR, Trau M. Isothermal detection of DNA by beacon-assisted detection amplification. Angew Chem Int Ed Engl. 2010;49(15):2720–3. https://doi.org/10.1002/anie.200906992.

    Article  CAS  PubMed  Google Scholar 

  5. Xu J, Dong H, Shen W, He S, Li H, Lu Y, et al. New molecular beacon for p53 gene point mutation and significant potential in serving as the polymerization primer. Biosens Bioelectron. 2015;66:504–11. https://doi.org/10.1016/j.bios.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Li C, Zhi X, Ramon GA, Liu Y, Zhang C, et al. Hairpin DNA-templated silver nanoclusters as novel beacons in strand displacement amplification for microRNA detection. Anal Chem. 2016;88(2):1294–302. https://doi.org/10.1021/acs.analchem.5b03729.

    Article  CAS  PubMed  Google Scholar 

  7. Kong RM, Zhang XB, Zhang LL, Huang Y, Lu DQ, Tan W, et al. Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification. Anal Chem. 2011;83(1):14–7. https://doi.org/10.1021/ac1025072.

    Article  CAS  PubMed  Google Scholar 

  8. Huang J, Wu J, Li Z. Molecular beacon-based enzyme-free strategy for amplified DNA detection. Biosens Bioelectron. 2016;79:758–62. https://doi.org/10.1016/j.bios.2016.01.014.

    Article  CAS  PubMed  Google Scholar 

  9. Qian Y, Wang C, Gao F. Enzyme-free amplification for sensitive electrochemical detection of DNA via target-catalyzed hairpin assembly assisted current change. Talanta. 2014;130:33–8. https://doi.org/10.1016/j.talanta.2014.06.051.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng J, Li N, Li C, Wang X, Liu Y, Mao G, et al. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Biosens Bioelectron. 2018;107:40–6. https://doi.org/10.1016/j.bios.2018.01.054.

    Article  CAS  PubMed  Google Scholar 

  11. Jung C, Allen PB, Ellington AD. A simple, cleated DNA Walker that hangs on to surfaces. ACS Nano. 2017;11(8):8047–54. https://doi.org/10.1021/acsnano.7b02693.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang DY, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem. 2011;3(2):103–13. https://doi.org/10.1038/nchem.957.

    Article  CAS  Google Scholar 

  13. Jung C, Ellington AD. Diagnostic applications of nucleic acid circuits. Acc Chem Res. 2014;47(6):1825–35. https://doi.org/10.1021/ar500059c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang DY, Turberfield AJ, Yurke B, Winfree E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science. 2007;318(5853):1121–5. https://doi.org/10.1126/science.1148532.

    Article  CAS  PubMed  Google Scholar 

  15. Yin P, Choi HM, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature. 2008;451(7176):318–22. https://doi.org/10.1038/nature06451.

    Article  CAS  PubMed  Google Scholar 

  16. Wu C, Cansiz S, Zhang L, Teng IT, Qiu L, Li J, et al. A nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells. J Am Chem Soc. 2015;137(15):4900–3. https://doi.org/10.1021/jacs.5b00542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi HM, Chang JY, Trinh le A, Padilla JE, Fraser SE, Pierce NA. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol. 2010;28(11):1208–12. https://doi.org/10.1038/nbt.1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bi S, Chen M, Jia X, Dong Y, Wang Z. Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew Chem Int Ed Engl. 2015;54(28):8144–8. https://doi.org/10.1002/anie.201501457.

    Article  CAS  PubMed  Google Scholar 

  19. Xuan F, Hsing IM. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc. 2014;136(28):9810–3. https://doi.org/10.1021/ja502904s.

    Article  CAS  PubMed  Google Scholar 

  20. Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science. 2011;332(6034):1196–201. https://doi.org/10.1126/science.1200520.

    Article  CAS  PubMed  Google Scholar 

  21. Pei R, Matamoros E, Liu M, Stefanovic D, Stojanovic MN. Training a molecular automaton to play a game. Nat Nanotechnol. 2010;5(11):773–7. https://doi.org/10.1038/nnano.2010.194.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang DY, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc. 2009;131(47):17303–14. https://doi.org/10.1021/ja906987s.

    Article  CAS  PubMed  Google Scholar 

  23. Srinivas N, Ouldridge TE, Sulc P, Schaeffer JM, Yurke B, Louis AA, et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 2013;41(22):10641–58. https://doi.org/10.1093/nar/gkt801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Genot AJ, Zhang DY, Bath J, Turberfield AJ. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J Am Chem Soc. 2011;133(7):2177–82. https://doi.org/10.1021/ja1073239.

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Lin Y, Le XC. Binding-induced formation of DNA three-way junctions and its application to protein detection and DNA strand displacement. Anal Chem. 2013;85(22):10835–41. https://doi.org/10.1021/ac402179a.

    Article  CAS  PubMed  Google Scholar 

  26. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, et al. NUPACK: analysis and design of nucleic acid systems. J Comput Chem. 2011;32(1):170–3. https://doi.org/10.1002/jcc.21596.

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Liu W, Yin B, Yu P, Duan X, Liao Z, et al. Colorimetric detection of gene transcript by target-induced three-way junction formation. Talanta. 2016;158:1–5. https://doi.org/10.1016/j.talanta.2016.05.039.

    Article  CAS  PubMed  Google Scholar 

  28. Tsourkas A, Behlke MA, Rose SD, Bao G. Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res. 2003;31(4):1319–30.

    Article  CAS  Google Scholar 

  29. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A. 2004;101(43):15275–8. https://doi.org/10.1073/pnas.0407024101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Yan Z, Sun Y, Ren J, Qu X. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis. Chem Commun (Camb). 2017;53(46):6215–8. https://doi.org/10.1039/c7cc03239k.

    Article  CAS  Google Scholar 

  31. Wang YM, Wu Z, Liu SJ, Chu X. Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal Chem. 2015;87(13):6470–4. https://doi.org/10.1021/acs.analchem.5b01634.

    Article  CAS  PubMed  Google Scholar 

  32. Huang R, Liao Y, Zhou X, Xing D. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection. Anal Chim Acta. 2015;888:162–72. https://doi.org/10.1016/j.aca.2015.07.041.

    Article  CAS  PubMed  Google Scholar 

  33. Chen HG, Ren W, Jia J, Feng J, Gao ZF, Li NB, et al. Fluorometric detection of mutant DNA oligonucleotide based on toehold strand displacement-driving target recycling strategy and exonuclease III-assisted suppression. Biosens Bioelectron. 2016;77:40–5. https://doi.org/10.1016/j.bios.2015.09.027.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Clinical Research Center from the Second Affiliated Hospital of Zhejiang University School of Medicine for essential technical supports. We thank the American Journal Experts (AJE) for English language editing.

Funding

This study was supported by grant from Natural Science Foundation of Zhejiang Province (Grant nos. LY14H200002, LY15H200002, and LY16H160023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Tao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, Y., Wang, X. et al. Toehold integrated molecular beacon system for a versatile non-enzymatic application. Anal Bioanal Chem 410, 7285–7293 (2018). https://doi.org/10.1007/s00216-018-1340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1340-z

Keywords

Navigation