Skip to main content
Log in

Preparation and evaluation of surface-bonded phenylglycine zwitterionic stationary phase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

4-Hydroxy-d-phenylglycine was modified with methacrylic anhydride and then immobilized on silica through thiol-initiated surface polymerization; the prepared material was applied as stationary phase for HPLC. The obtained stationary phase was characterized by elemental analysis, infrared spectroscopy, and thermogravimetric analysis. The chromatographic performance of the packed column was evaluated in reversed-phase liquid chromatograph (RPLC) and hydrophilic interaction liquid chromatograph (HILIC) mode; this column has shown excellent selectivity to both the hydrophobic and hydrophilic solutes. The selectivity towards polycyclic aromatic hydrocarbons relative to that towards alkylbenzenes exhibited by the prepared column was higher than the corresponding selectivity exhibited by commercial C18 column, which could be explained by electronic π-π interaction between phenylglycine and electron-rich aromatic rings. On the other hand, the prepared column has also shown better selectivity for polar compounds, which was based on the multiple interaction and retention mechanisms. It was also used to separate sulfonamides and organic acid compared with a commercial C18 and HILIC column; the results show its great chromatographic performance with distinctive selectivity. All the results indicated the prepared column had potential application in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo H, Liu R, Yang J, Yang B, Liang X, Chu C. A novel click lysine zwitterionic stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A. 2012;1223(3):47–52.

    Article  CAS  PubMed  Google Scholar 

  2. Lao YW, Mackenzie K, Vincent W, Krokhin OV. Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversed-phase chromatography. J Sep Sci. 2014;37(14):1788–96.

    Article  CAS  PubMed  Google Scholar 

  3. Kośliński P, Jarzemski P, Markuszewski MJ, Kaliszan R. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C 8, RP C 18). J Pharm Biomed Anal. 2014;91(1):37–45.

    Article  Google Scholar 

  4. Lavine BK, Corona DT. Analysis of vanilla extract by reversed phase liquid chromatography using water rich mobile phases. Microchem J. 2012;103(103):49–61.

    Article  CAS  Google Scholar 

  5. Kennedy DG, Mccracken RJ, Cannavan A, Hewitt SA. Use of liquid chromatography-mass spectrometry in the analysis of residues of antibiotics in meat and milk. J Chromatogr A. 1998;812(1–2):77–98.

    Article  CAS  PubMed  Google Scholar 

  6. Mcwhinney BC, Wallis SC, Hillister T, Roberts JA, Lipman J, Ungerer JPJ. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(22):2039–43.

    Article  CAS  Google Scholar 

  7. Schiesel S, Lämmerhofer M, Lindner W. Quantitative LC-ESI-MS/MS metabolic profiling method for fatty acids and lipophilic metabolites in fermentation broths from beta-lactam antibiotics production. Anal Bioanal Chem. 2010;397(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  8. Denooz R, Charlier C. Simultaneous determination of five β-lactam antibiotics (cefepim, ceftazidim, cefuroxim, meropenem and piperacillin) in human plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B. 2008;864(1–2):161–7.

    Article  CAS  Google Scholar 

  9. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr. 1990;499(2):177–96.

    Article  CAS  PubMed  Google Scholar 

  10. Tong C, Ling Z, Lu H, Song G, Li Y, Zhou H, et al. Preparation and application of covalently bonded polysaccharide-modified stationary phase for per aqueous liquid chromatography. Anal Chim Acta. 2017;964:195–202.

    Article  CAS  Google Scholar 

  11. Zhang H, Xin Q, Cai T, Jia C, Zhan L, Qiu H. Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem. 2017:1–10.

  12. Hou Y, Zhang F, Liu X, Ren Y, Yang B. A positively charged porous graphitic carbon stationary phase for hydrophilic interaction liquid chromatography. Talanta. 2017;164:159–63.

    Article  CAS  PubMed  Google Scholar 

  13. Qiao L, Shi X, Lu X, Xu G. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography. J Chromatogr A. 2015;1396:62–71.

    Article  CAS  PubMed  Google Scholar 

  14. Shen A, Guo Z, Yu L, Cao L, Liang X. A novel zwitterionic HILIC stationary phase based on “thiol-ene” click chemistry between cysteine and vinyl silica. Chem Commun. 2011;47(15):4550–2.

    Article  CAS  Google Scholar 

  15. Sentkowska A, Biesaga M, Pyrzynska K. Effects of the operation parameters on HILIC separation of flavonoids on zwitterionic column. Talanta. 2013;115(17):284–90.

    Article  CAS  PubMed  Google Scholar 

  16. Wernisch S, Trapp O, Lindner W. Application of cinchona-sulfonate-based chiral zwitterionic ion exchangers for the separation of proline-containing dipeptide rotamers and determination of on-column isomerization parameters from dynamic elution profiles. Anal Chim Acta. 2013;795(18):88–98.

    Article  CAS  PubMed  Google Scholar 

  17. Shen A, Li X, Dong X, Wei J, Guo Z, Liang X. Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography. J Chromatogr A. 2013;1314(11):63–9.

    Article  CAS  PubMed  Google Scholar 

  18. Guo X, Zhang X, Guo Z, Liu Y, Shen A, Jin G, et al. Hydrophilic interaction chromatography for selective separation of isomeric saponins. J Chromatogr A. 2014;1325(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yu D, Guo Z, Shen A, Yan J, Dong X, Jin G, et al. Synthesis and evaluation of sulfobetaine zwitterionic polymer bonded stationary phase. Talanta. 2016;161:860–6.

    Article  CAS  PubMed  Google Scholar 

  20. Huang G, Xiong Z, Qin H, Zhu J, Sun Z, Zhang Y, et al. Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Anal Chim Acta. 2014;809:61–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wikberg E, Verhage JJ, Viklund C, Irgum K. Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC. J Sep Sci. 2015;32(12):2008–16.

    Article  CAS  Google Scholar 

  22. Bo C, Wang X, Wang C, Wei Y. Preparation of hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase with adjustable selectivity by controlling different ratios of the co-monomers. J Chromatogr A. 2017;1487:201–10.

    Article  CAS  PubMed  Google Scholar 

  23. Kamichatani W, Inoue Y, Yamamoto A. Separation properties of saccharides on a hydrophilic stationary phase having hydration layer formed zwitterionic copolymer. Anal Chim Acta. 2015;853:602–7.

    Article  CAS  PubMed  Google Scholar 

  24. Pavel J, Jirí U, Veronika S, Pavel L, Romana K, Josef P. Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography. J Chromatogr A. 2010;1217(1):22–33.

    Article  CAS  Google Scholar 

  25. Wang X, Lin X, Xie Z. Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for CEC of polar analytes. Electrophoresis. 2009;30(15):2702–10.

    Article  CAS  PubMed  Google Scholar 

  26. Leermann T, Broutin PE, Leroux FR, Colobert F. Construction of the biaryl-part of vancomycin aglycon via atropo-diastereoselective Suzuki–Miyaura coupling. Org Biomol Chem. 2012;10(20):4095–102.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Kemmink J, Rijkers DT, Liskamp RM. Synthesis of 1,5-triazole bridged vancomycin CDE-ring bicyclic mimics using RuAAC macrocyclization. Chem Commun. 2013;49(40):4498–500.

    Article  CAS  Google Scholar 

  28. Ermert P, Meyer J, Stucki C, Schneebeli J, Obrecht JPA. Stereoselective synthesis of n-boc-α-amino alcohols and α-amino acids. Tetrahedron Lett. 1988;29(11):1265–8.

    Article  CAS  Google Scholar 

  29. Liu H, Guo Y, Wang X, Liang X, Liu X, Jiang S. A novel fullerene oxide functionalized silica composite as stationary phase for high performance liquid chromatography. RSC Adv. 2014;4(34):17541–8.

    Article  CAS  Google Scholar 

  30. Lumley B, Khong TM, Perrett D. The characterisation of chemically bonded chromatographic stationary phases by thermogravimetry. Chromatographia. 2004;60(1):59–62.

    CAS  Google Scholar 

  31. Ruelle P. The n-octanol and n-hexane/water partition coefficient of environmentally relevant chemicals predicted from the mobile order and disorder (MOD) thermodynamics. Chemosphere. 2000;40(5):457–512.

    Article  CAS  PubMed  Google Scholar 

  32. Qiu H, Takafuji M, Liu X, Jiang S, Ihara H. Investigation of pi-pi and ion-dipole interactions on 1-allyl-3-butylimidazolium ionic liquid-modified silica stationary phase in reversed-phase liquid chromatography. J Chromatogr A. 2010;1217(32):5190–6.

    Article  CAS  PubMed  Google Scholar 

  33. Qiu H, Mallik AK, Takafuji M, Liu X, Jiang S, Ihara H. A new imidazolium-embedded C18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal Chim Acta. 2012;738(15):95–101.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang W, Irgum K. Type zwitterionic stationary phase prepared by surface-initiated graft polymerization of 3-[N,N-dimethyl-N-(methacryloyloxyethyl)-ammonium] propanesulfonate through peroxide groups tethered on porous silica. Anal Chem. 2002;74(18):4682–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (no. 21277110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdong Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Wang, X., Peng, J. et al. Preparation and evaluation of surface-bonded phenylglycine zwitterionic stationary phase. Anal Bioanal Chem 410, 5941–5950 (2018). https://doi.org/10.1007/s00216-018-1211-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1211-7

Keywords

Navigation