Skip to main content

Advertisement

Log in

Colorimetric determination of glutathione in human serum and cell lines by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we developed a simple colorimetric approach to detect glutathione (GSH). The proposed approach is based on the ability of CuS-PDA-Au composite material to catalytically oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to ox-TMB to induce a blue color with an absorption peak centered at 652 nm. However, the introduction of GSH can result in a decrease in oxidized TMB; similarly, it can combine with Au nanoparticles (Au NPs) on the surface of CuS-PDA-Au composite material. Both approaches can result in a fading blue color and a reduction of the absorbance at 652 nm. Based on this above, we proposed a technique to detect GSH quantitatively and qualitatively through UV-Vis spectroscopy and naked eye, respectively. This approach demonstrates a low detection limit of 0.42 μM with a broad detection range of 5 × 10−7–1 × 10−4 M with the assistance of UV-Vis spectroscopy. More importantly, this approach is convenient and rapid. This method was successfully applied to GSH detection in human serum and cell lines.

A colorimetric approach has been developed by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite for sensitive glutathione detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263(33):17205–8.

    CAS  PubMed  Google Scholar 

  2. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Jr SP, Reed RL, et al. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998;24(5):699–704.

  3. Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta. 2012;1822(5):625–30.

    Article  CAS  PubMed  Google Scholar 

  4. Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30(1–2):42–59.

    Article  CAS  Google Scholar 

  5. Jimenez LA. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal. 2005;7(1–2):42–59.

    PubMed  Google Scholar 

  6. Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49(1):151–66.

    Article  Google Scholar 

  7. Perry RR, Mazetta JA, Levin M, Barranco SC. Glutathione levels and variability in breast tumors and normal tissue. Cancer. 2015;72(3):783–7.

    Article  Google Scholar 

  8. Xianyu Y, Xie Y, Wang N, Wang Z, Jiang X. A dispersion-dominated chromogenic strategy for colorimetric sensing of glutathione at the nanomolar level using gold nanoparticles. Small. 2015;11(41):5510–4.

    Article  CAS  PubMed  Google Scholar 

  9. Guo Y, Wang H, Sun Y, Qu B. A disulfide bound-molecular beacon as a fluorescent probe for the detection of reduced glutathione and its application in cells. Chem Commun. 2012;48(26):3221–3.

    Article  CAS  Google Scholar 

  10. Zhang Q, Vakili MR, Li XF, Lavasanifar A, Le XC. Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells. Biomaterials. 2014;35(25):7088–100.

    Article  CAS  PubMed  Google Scholar 

  11. Feng J, Huang P, Shi S, Deng KY, Wu FY. Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: a promising powerful tool for identifying cancer cells. Anal Chim Acta. 2017;967:64–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tcherkas YV, Denisenko AD. Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J Chromatogr A. 2001;913(1):309–13.

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Li L, Liu S, Ma C, Zhang S. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J Am Chem Soc. 2008;130(33):10846–7.

    Article  CAS  PubMed  Google Scholar 

  14. Miao P, Liu L, Nie Y, Li G. An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron. 2009;24(11):3347–51.

    Article  CAS  PubMed  Google Scholar 

  15. Meng F, Miao P, Wang B, Tang Y, Yin J. Identification of glutathione by voltammetric analysis with rolling circle amplification. Anal Chim Acta. 2016;943:58–63.

    Article  CAS  PubMed  Google Scholar 

  16. Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. ChemInform abstract: design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev. 2015;46(42):6143–60.

    Article  Google Scholar 

  17. Dai X, Du ZF, Wang LH, Miao JY, Zhao BX. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells. Anal Chim Acta. 2016;922:64–70.

    Article  CAS  PubMed  Google Scholar 

  18. Rusin O, Luce NNS, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. Visual detection of cysteine and Homocysteine. J Am Chem Soc. 2004;126(2):438–9.

  19. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159–65.

    Article  CAS  PubMed  Google Scholar 

  20. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93.

    Article  CAS  PubMed  Google Scholar 

  21. Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  22. Shamsipur M, Safavi A, Mohammadpour Z. Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes. Sensors Actuators B Chem. 2014;199(4):463–9.

    Article  CAS  Google Scholar 

  23. Wang Q, Zhang L, Shang C, Zhang Z, Dong S. Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem Commun. 2016;52(31):5410–3.

    Article  CAS  Google Scholar 

  24. Ge S, Liu W, Liu H, Liu F, Yu J, Yan M, et al. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens Bioelectron. 2015;71:456–62.

  25. Dong Y, Zhang J, Jiang P, Wang G, Wu X, Zhao H, et al. Superior peroxidase mimetic activity of carbon dots–Pt nanocomposites relies on synergistic effects. New J Chem. 2015;39(5):4141–6.

  26. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta. 2016:1–20.

  27. Niu X, He Y, Pan J, Li X, Qiu F, Yan Y, et al. Uncapped nanobranch-based CuS clews used as an efficient peroxidase mimic enable the visual detection of hydrogen peroxide and glucose with fast response. Anal Chim Acta. 2016;947:42–9.

  28. Zou H, Yang T, Lan J, Huang C. Use of the peroxidase mimetic activity of erythrocyte-like Cu1.8S nanoparticles in the colorimetric determination of glutathione. Anal Methods. 2017;9(5):841–6.

    Article  CAS  Google Scholar 

  29. Qu K, Shi P, Ren J, Qu X. Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chemistry. 2014;20(24):7501–6.

    Article  CAS  PubMed  Google Scholar 

  30. Liang RP, Yao GH, Fan LX, Qiu JD. Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta. 2012;737(6):22–8.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou H, Ning G, Li T, Cao Y, Zeng S, Lei Z, et al. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP. Anal Chim Acta. 2012;746:107–13.

  32. Wang AJ, Ju KJ, Zhang QL, Song P, Wei J, Feng JJ. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions. J Power Sources. 2016;326:227–34.

    Article  CAS  Google Scholar 

  33. Josephy PD, Eling T, Mason RP. The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem. 1982;257(7):3669–75.

    CAS  PubMed  Google Scholar 

  34. Bally RW, Gribnau TC. Some aspects of the chromogen 3,3′,5,5′-tetramethylbenzidine as hydrogen donor in a horseradish peroxidase assay. J Clin Chem Clin Biochem. 1989;27(10):791–6.

    CAS  PubMed  Google Scholar 

  35. Yin J, Cao H, Lu Y. Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J Mater Chem. 2011;22(2):527–34.

    Article  Google Scholar 

  36. Liu M, Zhao H, Chen S, Yu H, Quan X. Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano. 2012;6(4):3142–51.

    Article  CAS  PubMed  Google Scholar 

  37. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

  38. Yang XF, Huang Q, Zhong Y, Li Z, Li H, Lowry M, et al. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine. Chem Sci. 2014;5(6):2177–83.

  39. Yang W, Hao J, Zhang Z, Zhang B. PB@Co3O4nanoparticles as both oxidase and peroxidase mimics and their application for colorimetric detection of glutathione. New J Chem. 2015;39(11):8802–6.

    Article  CAS  Google Scholar 

  40. Eyer P, Podhradský D. Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman's reagent. Anal Biochem. 1986;153(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron. 2017;90:69–74.

    Article  CAS  PubMed  Google Scholar 

  42. Wang T, Su P, Li H, Yang Y, Yang Y. Triple-enzyme mimetic activity of Co3O4nanotubes and their applications in colorimetric sensing of glutathione. New J Chem. 2016;40(12):10056–63.

    Article  CAS  Google Scholar 

  43. Ni P, Sun Y, Dai H, Hu J, Jiang S, Wang Y, et al. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3′,5,5′-tetramethylbenzidine (TMB). Biosens Bioelectron. 2015;63(2):47–52.

  44. Zhang X, Mao X, Li S, Dong W, Huang Y. Tuning the oxidase mimics activity of manganese oxides via control of their growth conditions for highly sensitive detection of glutathione. Sensors Actuators B Chem. 2018;258:80–7.

    Article  CAS  Google Scholar 

  45. Li S, Wang L, Zhang X, Chai H, Huang Y. A Co,N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sensors Actuators B Chem. 2018;264:312–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable suggestions.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (21305097) and Two-way Support Plan Foundation of Sichuan Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanbing Rao or Xianxiang Wang.

Ethics declarations

The project was approved by the Third People’s Hospital of Chengdu. All experiments were performed in compliance with the relevant laws and institutional guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y., Ding, F. et al. Colorimetric determination of glutathione in human serum and cell lines by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite. Anal Bioanal Chem 410, 4805–4813 (2018). https://doi.org/10.1007/s00216-018-1117-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1117-4

Keywords

Navigation