Skip to main content

Advertisement

Log in

Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P6,6,6,14]FeCl4) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L−1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L−1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P6,6,6,14]FeCl4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples.

Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu C, Ling Q, Yan S, Lia J, Chen Z, Peng Z. Cadmium contamination in various environmental materials in an industrial area, Hangzhou, China. Chem Spec Bioavailab. 2010;22(1):35–42.

    Article  CAS  Google Scholar 

  2. Szkup-Jablonska M, Karakiewicz B, Grochans E, Jurczak A, Nowak-Starz G, Rotter I, et al. Effects of blood lead and cadmium levels on the functioning of children with behaviour disorders in the family environment. Ann Agric Environ Med. 2012;19(2):241–6.

    CAS  PubMed  Google Scholar 

  3. Ramos JC, Curtius AJ, Borges DL. Diethyldithiophosphate (DDTP): a review on properties, general applications, and use in analytical spectrometry. Appl Spectrosc Rev. 2012;47(8):583–619.

    Article  CAS  Google Scholar 

  4. Rodrı́guez Garcı́a JC, Barciela Garcı́a J, Herrero Latorre C, Freire Rodrı́guez M, Garcı́a Martı́n S, Peña Crecente RM. Comparison of palladium–magnesium nitrate and ammonium dihydrogenphosphate modifiers for cadmium determination in honey samples by electrothermal atomic absorption spectrometry. Talanta. 2003;61(4):509–17.

    Article  CAS  PubMed  Google Scholar 

  5. Ministerio de Salud de Argentina, Brasil, Paraguay y Uruguay. Reglamento Técnico Mercosur sobre límites máximos de contaminantes inorgánicos en alimentos (Res N° 12/11). 2011:10–1.

  6. Mendil D. Determination of Cd (II), Cu (II), and Pb (II) in some foods by FAAS after preconcentration on modified silica gels with thiourea. J Food Sci. 2012;77(9):T181–6.

    Article  CAS  PubMed  Google Scholar 

  7. Stecka H, Jedryczko D, Pohl P, Welna M. Pre-concentration of traces of cadmium, cobalt, nickel and lead in natural honeys by solid phase extraction followed by their determination using flame atomic absorption spectrometry. J Braz Chem Soc. 2014;25:331–9.

    CAS  Google Scholar 

  8. Khammas ZAA, Ghali AA, Kadhim KH. Combined cloud-point extraction and spectrophotometric detection of lead and cadmium in honey samples using a new ligand. Int J Chem Sci. 2012;10(3):1185–204.

    CAS  Google Scholar 

  9. Rosa FC, Duarte FA, Paniz JNG, Heidrich GM, Nunes MAG, Flores EMM, et al. Dispersive liquid–liquid microextraction: an efficient approach for the extraction of Cd and Pb from honey and determination by flame atomic absorption spectrometry. Microchem J. 2015;123(Supplement C):211–7.

    Article  CAS  Google Scholar 

  10. Koel M. Ionic liquids in chemical analysis. CRC Press; 2008.

  11. Chen H, Han J, Wang Y, Hu Y, Ni L, Liu Y, et al. Hollow fiber liquid-phase microextraction of cadmium(II) using an ionic liquid as the extractant. Microchim Acta. 2014;181(11–12):1455–61.

    Article  CAS  Google Scholar 

  12. Khan S, Kazi TG, Soylak M. Ionic liquid-based ultrasound-assisted emulsification microextraction of cadmium in biological samples: optimization by a multivariate approach. Anal Lett. 2015;48(11):1751–66.

    Article  CAS  Google Scholar 

  13. Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, et al. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta. 2015;888:67–74.

    Article  CAS  PubMed  Google Scholar 

  14. Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, et al. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem. 2015;87(3):1552–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Merib J, Anderson JL. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. J Chromatogr A. 2016;1463:11–9.

    Article  CAS  PubMed  Google Scholar 

  16. Beiraghi A, Shokri M, Seidi S, Godajdar BM. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid–liquid microextraction. J Chromatogr A. 2015;1376:1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Del Sesto RE, McCleskey TM, Burrell AK, Baker GA, Thompson JD, Scott BL, et al. Structure and magnetic behavior of transition metal based ionic liquids. Chem Commun. 2008;(4):447–9.

  18. Wang J, Yao H, Nie Y, Zhang X, Li J. Synthesis and characterization of the iron-containing magnetic ionic liquids. J Mol Liq. 2012;169:152–5.

    Article  CAS  Google Scholar 

  19. Welz B, Sperling M. Atomic absorption spectrometry. Wiley; 2008.

  20. Martinis EM, Berton P, Monasterio RP, Wuilloud RG. Emerging ionic liquid-based techniques for total-metal and metal-speciation analysis. Trends Anal Chem. 2010;29(10):1184–201.

    Article  CAS  Google Scholar 

  21. Martí FB. Química analítica cualitativa. Editorial Paraninfo; 2008.

  22. Rayner-Canham GG, Luis R, Escalona y Garcia, HJ, Barán EJ, Rodgers GE. Química inorgánica descriptiva. Pearson Educación; 2000.

  23. Di Bella G, Turco VL, Potortì AG, Bua GD, Fede MR, Dugo G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J Food Compost Anal. 2015;44:25–35.

    Article  CAS  Google Scholar 

  24. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. Pearson Education; 2005.

  25. WHO Technical Report. FAO/WHO Joint Expert Committee on Food Additives, No 505 1972 p 32–33.

  26. Berton P, Martinis EM, Martinez LD, Wuilloud RG. Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry. Anal Chim Acta. 2012;713:56–62.

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Cai S, Hu W, Chen H, Liu H. Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochim Acta Part, B. 2009;64(7):666–71.

    Article  CAS  Google Scholar 

  28. Zhang C, Wang Y, Cheng X, Xia H, Liang P. Determination of cadmium and lead in human teeth samples using dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. J Chin Chem Soc. 2011;58(7):919–24.

    Article  CAS  Google Scholar 

  29. Jahromi EZ, Bidari A, Assadi Y, Hosseini MRM, Jamali MR. Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples. Anal Chim Acta. 2007;585(2):305–11.

    Article  CAS  Google Scholar 

  30. Pohl P. Determination of metal content in honey by atomic absorption and emission spectrometries. Trends Anal Chem. 2009;28(1):117–28.

    Article  CAS  Google Scholar 

  31. Matin G, Kargar N, Buyukisik HB. Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecol Eng. 2016;90:331–5.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT) (Projects PICT-2013-0072-BID and PICT-2016-2506-BID), and Universidad Nacional de Cuyo (Project 06/M099) (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo G. Wuilloud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorentini, E.F., Escudero, L.B. & Wuilloud, R.G. Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey. Anal Bioanal Chem 410, 4715–4723 (2018). https://doi.org/10.1007/s00216-018-1050-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1050-6

Keywords

Navigation