Skip to main content
Log in

Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications.

The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Honig RE, Woolston JR. Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces. Appl Phys Lett. 1963;2(7):138–9.

    Article  CAS  Google Scholar 

  2. Posthumus MA, Kistemaker PG, Meuzelaar HLC, Tennoeverdebrauw MC. Laser desorption-mass spectrometry of polar non-volatile bio-organic molecules. Anal Chem. 1978;50(7):985–91.

    Article  CAS  Google Scholar 

  3. Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57(14):2935–9.

    Article  CAS  Google Scholar 

  4. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp. 1988;2(8):151–3.

    Article  CAS  Google Scholar 

  5. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103(2):395–425.

    Article  CAS  Google Scholar 

  6. Beekman DW, Callcott TA, Kramer SD, Arakawa ET, Hurst GS, Nussbaum E. Resonance ionization source for mass-spectroscopy. Int J Mass Spectrom Ion Process. 1980;34(1–2):89–97.

    Article  CAS  Google Scholar 

  7. Grotemeyer J, Boesl U, Walter K, Schlag EW. Biomolecules in the gas-phase. 2. Multiphoton ionization mass-spectrometry of angiotensin-I. Org Mass Spectrom. 1986;21(9):595–7.

    Article  Google Scholar 

  8. Spengler B, Bahr U, Karas M, Hillenkamp F. Postionization of laser-desorbed organic and inorganic-compounds in a time of flight mass-spectrometer. Anal Instrum. 1988;17(1–2):173–93.

    Article  CAS  Google Scholar 

  9. Shiea J, Huang MZ, HSu HJ, Lee CY, Yuan CH, Beech I, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Sp. 2005;19(24):3701–4.

    Article  CAS  Google Scholar 

  10. Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectr. 2006;17(12):1712–6.

    Article  CAS  Google Scholar 

  11. Dixon RB, Muddiman DC. Study of the ionization mechanism in hybrid laser based desorption techniques. Analyst. 2010;135(5):880–2.

    Article  CAS  Google Scholar 

  12. Sampson JS, Muddiman DC. Atmospheric pressure infrared (10.6 mu m) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Sp. 2009;23(13):1989–92.

    Article  CAS  Google Scholar 

  13. Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectr. 2014;25(3):319–28.

    Article  CAS  Google Scholar 

  14. Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem. 2007;79(21):8098–106.

    Article  CAS  Google Scholar 

  15. Wu CP, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32(3):218–43.

    Article  CAS  Google Scholar 

  16. Walsh JT Jr, Flotte TJ, Deutsch TF. Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med. 1989;9(4):314–26.

    Article  Google Scholar 

  17. Nazari M, Muddiman DC. Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 2016;141(2):595–605.

    Article  CAS  Google Scholar 

  18. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–20.

    Article  CAS  Google Scholar 

  19. Schramm T, Hester A, Klinkert I, Both JP, Heeren RMA, Brunelle A, et al. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome. 2012;75(16):5106–10.

    Article  CAS  Google Scholar 

  20. Race AM, Styles IB, Bunch J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J Proteome. 2012;75(16):5111–2.

    Article  CAS  Google Scholar 

  21. Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom. 2017;

  22. Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on matlab platform. J Am Soc Mass Spectr. 2013;24(5):718–21.

    Article  CAS  Google Scholar 

  23. Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D, Tarasov A, et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Methods. 2017;14(1):57–60.

    Article  CAS  Google Scholar 

  24. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, et al. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 2013;41(D1):D801–D7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Troy Ghashghaei (NCSU Department of Molecular Biomedical Sciences) for providing the animal tissues used in imaging experiments.

Funding

Financial support for this work was received from the National Institutes of Health (R01GM087964). All of the mass spectrometry measurements were carried out in the Molecular Education, Technology, and Research Innovation Center (METRIC) at NC State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Ethics declarations

Conflicts of interest

J. Manni is president and owner of JGM Associates Inc. (JGMA) which makes the 2950-nm OPO laser used in these experiments. Certain aspects of the laser design are JGMA patent pending. None of the remaining authors have any conflicts of interest.

Use of research animals

This study utilized tissues sourced from animals managed in accordance with the Institute for Laboratory Animal Research Guide. All husbandry practices were approved by North Carolina State University Institutional Animal Care and Use Committee (IACUC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekelöf, M., Manni, J., Nazari, M. et al. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging. Anal Bioanal Chem 410, 2395–2402 (2018). https://doi.org/10.1007/s00216-018-0918-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0918-9

Keywords

Navigation