Skip to main content
Log in

Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The thiophene-modified rhodamine 6G (GYJ) has been synthesized as a novel chemosensor. The sensor has sufficiently high selectivity and sensitivity for the detection of Fe3+ and Al3+ ions (M3+) by fluorescence and ultraviolet spectroscopy with a strong ability for anti-interference performance. The binding ratio of M3+-GYJ complex was determined to be 2:1 according to the Job’s plot. The binding constants for Fe3+ and Al3+ were calculated to be 3.91 × 108 and 5.26 × 108 M−2, respectively. All these unique features made it particularly favorable for cellular imaging applications. The obvious fluorescence microscopy experiments demonstrated that the probes could contribute to the detection of Fe3+ and Al3+ in related cells and biological organs with satisfying resolution.

GYJ has high selectivity and sensitivity for the detection of Fe(III) and Al(III) with the binding ratio of 2:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aron AT, Loehr MO, Bogena J, Chang CJ. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc. 2016;138(43):14338–46.

    Article  CAS  Google Scholar 

  2. Jo TG, Bok KH, Han J, Lim MH, Kim C. Colorimetric detection of Fe3+ and Fe2+ and sequential fluorescent detection of Al3+ and pyrophosphate by an imidazole-based chemosensor in a near-perfect aqueous solution. Dyes Pigments. 2017;139:136–47.

    Article  CAS  Google Scholar 

  3. Zhao M, Deng Z, Tang J, Zhou X, Chen Z, Li X, et al. 2-(1-Pyrenyl) benzimidazole as a ratiometric and “turn-on” fluorescent probe for iron(III) ions in aqueous solution. Analyst. 2016;141(7):2308–12.

    Article  CAS  Google Scholar 

  4. Barcelo J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot. 2002;48(1):75–92.

    Article  CAS  Google Scholar 

  5. Fasman GD. Aluminum and Alzheimer’s disease: model studies. Coord Chem Rev. 1996;149:125–65.

    Article  CAS  Google Scholar 

  6. Flaten TP. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull. 2001;55(2):187–96.

    Article  CAS  Google Scholar 

  7. Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106(9):3242–50.

    Article  CAS  Google Scholar 

  8. Pithadia AS, Lim MH. Metal-associated amyloid-β species in Alzheimer’s disease. Curr Opin Chem Biol. 2012;16(1):67–73.

    Article  CAS  Google Scholar 

  9. D’autréaux B, Tucker NP, Dixon R, Spiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature. 2005;437(7059):769–72.

    Article  Google Scholar 

  10. Wang J, Li Y, Patel NG, Zhang G, Zhou D, Pang Y. A single molecular probe for multi-analyte (Cr3+, Al3+ and Fe3+) detection in aqueous medium and its biological application. Chem Commun. 2014;50(82):12258–61.

    Article  CAS  Google Scholar 

  11. Eisold U, Sellrie F, Schenk JA, Lenz C, Stöcklein WFM, Kumke MU. Bright or dark immune complexes of anti-TAMRA antibodies for adapted fluorescence-based bioanalysis. Anal Bioanal Chem. 2015;407(12):3313–23.

    Article  CAS  Google Scholar 

  12. Ma S, Yang Z, She M, Sun W, Yin B, Liu P, et al. Design and synthesis of functionalized rhodamine based probes for specific intracellular fluorescence imaging of Fe3+. Dyes Pigments. 2015;115:120–6.

    Article  CAS  Google Scholar 

  13. Zhou L, Zhang X, Wang Q, Lv Y, Mao G, Luo A, et al. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J Am Chem Soc. 2014;136(28):9838–41.

    Article  CAS  Google Scholar 

  14. Mariana B, Carlos AMA, Jose MGM. Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev. 2009;38(8):2410–33.

    Article  Google Scholar 

  15. Hu ZQ, Wang XM, Feng YC, Ding L, Li M, Lin CS. A novel colorimetric and fluorescent chemosensor for acetate ions in aqueous media based on a rhodamine 6G–phenylurea conjugate in the presence of Fe(III) ions. Chem Commun. 2011;47(5):1622–4.

    Article  CAS  Google Scholar 

  16. Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev. 2012;112(3):1910–56.

    Article  CAS  Google Scholar 

  17. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. Chem Soc Rev. 2008;37:1465–72.

    Article  CAS  Google Scholar 

  18. He L, Zhu S, Liu Y, Xie Y, Xu Q, Wei H, et al. Broadband light-harvesting molecular triads with high FRET efficiency based on the coumarin–rhodamine–BODIPY platform. Chem Eur J. 2015;21(34):12181–7.

    Article  CAS  Google Scholar 

  19. Ding Y, Zhu H, Zhang X, Zhu JJ, Burda C. Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem Commun. 2013;49(71):7797–9.

    Article  CAS  Google Scholar 

  20. Cao LH, Shi F, Zhang WM, Zang SQ, Mak TCW. Selective sensing of Fe3+ and Al3+ ions and detection of 2,4,6-trinitrophenol by a water-stable terbium-based metal-organic framework. Chem Eur J. 2015;21(44):15705–12.

    Article  CAS  Google Scholar 

  21. Liu A, Yang L, Zhang Z, Zhang Z, Xu D. A novel rhodamine-based colorimetric and fluorescent sensor for the dual-channel detection of Cu2+ and Fe3+ in aqueous solutions. Dyes Pigments. 2013;99(2):472–9.

    Article  CAS  Google Scholar 

  22. Qin JC, Yang ZY, Wang GQ, Li CR. FRET-based rhodamine–coumarin conjugate as a Fe3+ selective ratiometric fluorescent sensor in aqueous media. Tetrahedron Lett. 2015;56(35):5024–9.

    Article  CAS  Google Scholar 

  23. Wang KP, Zhang SJ, Lv CD, Shang HS, Jin ZH, Chen S, et al. A highly sensitive and selective turn-on fluorescent sensor for dihydrogen phosphate in living cells. Sensors Actuators B Chem. 2017;247:791–6.

    Article  CAS  Google Scholar 

  24. Hu ZQ, Du M, Zhang LF, Guo FY, Liu MD, Li M. A novel colorimetric and fluorescent chemosensor for cyanide ion in aqueous media based on a rhodamine derivative in the presence of Fe3+ ion. Sensors Actuators B Chem. 2014;192:439–43.

    Article  CAS  Google Scholar 

  25. Jiang Y, Sun LL, Ren GZ, Niu X, Hu WZ, Hu ZQ. A new fluorescence turn-on probe for aluminum(III) with high selectivity and sensitivity, and its application to bioimaging. Chem Open. 2015;4(3):378–82.

    CAS  Google Scholar 

  26. Wu JS, Hwang IC, Kim KS, Kim JS. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent off-on. Org Lett. 2007;9(5):907–10.

    Article  Google Scholar 

  27. Li X, Wang W, Chen Y, Ding C. Fluorescence detection of telomerase activity in high concentration of cell lysates based on strand-displacement mediated recycling. Analyst. 2016;141(8):2388–91.

    Article  CAS  Google Scholar 

  28. Rodríguez-Cáceres MI, Agbaria RA, Warner IM. Fluorescence of metal-ligand complexes of mono- and di-substituted naphthalene derivatives. J Fluoresc. 2005;15(2):185–90.

    Article  Google Scholar 

  29. Hirose K. A practical guide for the determination of binding constants. J Incl Phenom Macrocycl Chem. 2001;39:193–209.

    Article  CAS  Google Scholar 

  30. Fang X, Zhang S, Zhao G, Zhang W, Xu J, Ren A, et al. The solvent-dependent binding modes of a rhodamine-azacrown based fluorescent probe for Al3+ and Fe3+. Dyes Pigments. 2014;101:58–66.

    Article  CAS  Google Scholar 

  31. Gupta VK, Mergu N, Kumawat LK. A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sensors Actuators B Chem. 2016;223:101–13.

    Article  CAS  Google Scholar 

  32. Wang KP, Jin ZH, Shang HS, Lv CD, Zhang Q, Chen S, et al. A highly selective fluorescent chemosensor for Zn2+ based on the rhodamine derivative incorporating coumarin group. J Fluoresc. 2017;27(2):629–33.

    Article  CAS  Google Scholar 

  33. Chen Z, Chen J, Pan D, Li H, Yao Y, Lyu Z, et al. “Reactive” optical sensor for Hg2+ and its application in environmental aqueous media and biological systems. Anal Bioanal Chem. 2017;409(9):2429–35.

    Article  CAS  Google Scholar 

  34. Wang KP, Chen Y, Liu Y. A polycation-induced secondary assembly of amphiphilic calixarene and its multi-stimuli responsive gelation behavior. Chem Commun. 2015;51(9):1647–9.

    Article  CAS  Google Scholar 

  35. Samanta S, Ray T, Haque F, Das G. A turn-on rhodamine B-indole based fluorogenic probe for selective sensing of trivalent ions. J Lumin. 2016;171:13–8.

    Article  CAS  Google Scholar 

  36. Zhang Q, Liu YC, Kong DM, Guo DS. Tetraphenylethene derivatives with different numbers of positively charged side arms have different multimeric G-quadruplex recognition specificity. Chem Eur J. 2015;21(38):13253–60.

    Article  CAS  Google Scholar 

  37. Wang KP, Guo DS, Zhao HX, Liu Y. Synthesis of doubly ethyl-bridged bis(p-sulfonatocalix[4]arene) and its supramolecular polymerization with viologen dimer. Chem Eur J. 2014;20(14):4023–31.

    Article  CAS  Google Scholar 

  38. Shiraishi Y, Sumiya S, Kohno Y, Hirai T. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J Org Chem. 2008;73(21):8571–4.

    Article  CAS  Google Scholar 

  39. Li KB, Wang H, Zang Y, He XP, Li J, Chen GR, et al. One-step click engineering considerably ameliorates the practicality of an unqualified rhodamine probe. ACS Appl Mater Interfaces. 2014;6(22):19600–5.

    Article  CAS  Google Scholar 

  40. Fu H, Ji Z, Chen X, Cheng A, Liu S, Gong P, et al. A versatile ratiometric nanosensing approach for sensitive and accurate detection of Hg2+ and biological thiols based on new fluorescent carbon quantum dots. Anal Bioanal Chem. 2017;409(9):2373–82.

    Article  CAS  Google Scholar 

  41. Hou S, Qu Z, Zhong K, Bian Y, Tang L. A new rhodamine-based visual and fluorometric probe for selective detection of trivalent cations. Tetrahedron Lett. 2016;57(24):2616–9.

    Article  CAS  Google Scholar 

  42. Zhou F, Leng TH, Liu YJ, Wang CY, Shi P, Zhu WH. Water-soluble rhodamine-based chemosensor for Fe3+ with high sensitivity, selectivity and anti-interference capacity and its imaging application in living cells. Dyes Pigments. 2017;142:429–36.

    Article  CAS  Google Scholar 

  43. Hu Y, Zhao F, Hu S, Dong Y, Li D, Su Z. A novel turn-on colorimetric and fluorescent sensor for Fe3+ and its application in living cells. J Photochem Photobiol A Chem. 2017;332:351–6.

    Article  CAS  Google Scholar 

  44. Paul S, Manna A, Goswami S. A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium. Dalton Trans. 2015;44(26):11805–10.

    Article  CAS  Google Scholar 

  45. Mao J, He Q, Liu W. An “off–on” fluorescence probe for chromium(III) ion determination in aqueous solution. Anal Bioanal Chem. 2010;396(3):1197–203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21172127) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Clarification for source of living cells

The HeLa cells were obtained from Prof. Hai-Yu Hu’s Lab (Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China).

Electronic supplementary material

ESM 1

(PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KP., Chen, JP., Zhang, SJ. et al. Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells. Anal Bioanal Chem 409, 5547–5554 (2017). https://doi.org/10.1007/s00216-017-0490-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0490-8

Keywords

Navigation