Skip to main content
Log in

Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, N-doped carbon dots (NCDs) were successfully decorated on the spherical porous silica surface in deep eutectic solvents (DESs) as a novel class of green solvents. The appropriate density and hydrophility of DESs guaranteed the fine dispersibility of silica particles and NCDs, resulting in a homogeneous and thin layer of NCDs immobilization. As compared with traditional organic solvents (DMF and THF), higher surface coverage was obtained in the medium of DES, proving its feasibility as a new kind of alternative solvent for hydrophilic nanomaterial-based surface modification of silica spheres. The resulting NCDs-decorated silica particles (Sil-NCDs) were characterized in detail and packed into chromatographic columns to study their initial feasibility as adsorbent material for liquid chromatography. The resultant packing materials demonstrate a selective behavior for polar compounds in hydrophilic interaction liquid chromatography (HILIC) mode. This work gives a typical example of using carbon dots as stationary phase component, and such material is hopeful to be used in other research fields such as solid absorbents, recycling catalysts, and solid-state electrochemistry etc.

N-doped carbon dots (NCDs) were successfully coupled on the surface of porous silica spheres in a green strategy using deep eutectic solvents (DES) as media for HILIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trojanowicz M. Analytical applications of carbon nanotubes: a review. TrAC Trends Anal Chem. 2006;25:480–9.

    Article  CAS  Google Scholar 

  2. Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MÁ. Carbon nanotubes: solid-phase extraction. J Chromatogr A. 2010;1217:2618–41.

    Article  Google Scholar 

  3. Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115:10816–906.

    Article  CAS  Google Scholar 

  4. Valcárcel M, Cárdenas S, Simonet BM. Role of carbon nanotubes in analytical science. Anal Chem. 2007;79:4788–97.

    Article  Google Scholar 

  5. Speltini A, Merli D, Profumo A. Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal Chim Acta. 2013;783:1–16.

    Article  CAS  Google Scholar 

  6. Zhang M, Qiu H. Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography. TrAC Trends Anal Chem. 2015;65:107–21.

    Article  CAS  Google Scholar 

  7. Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew Chem Int Ed. 2011;50:5913–7.

    Article  CAS  Google Scholar 

  8. Xue Z, Vinci JC, Colón LA. Nanodiamond-decorated silica spheres as a chromatographic material. ACS Appl Mater Interfaces. 2016;8:4149–57.

    Article  CAS  Google Scholar 

  9. Cai T, Zhang H, Li Z, Rahman AFMM, Qiu H. A new nano-on-micro stationary phase based on nanodiamond bonded on silica for hydrophilic interaction chromatography. RSC Adv. 2016;6:32757–60.

    Article  CAS  Google Scholar 

  10. Herrera-Herrera AV, González-Curbelo MÁ, Hernández-Borges J, Rodríguez-Delgado MÁ. Carbon nanotubes applications in separation science: a review. Anal Chim Acta. 2012;734:1–30.

    Article  CAS  Google Scholar 

  11. Mukhtar NH, See HH. Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples. Anal Chim Acta. 2016;931:57–63.

    Article  CAS  Google Scholar 

  12. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    Article  CAS  Google Scholar 

  13. Wang Y, Zhuang Q, Ni Y. Facile microwave-assisted solid-phase synthesis of highly fluorescent nitrogen–sulfur-codoped carbon quantum dots for cellular imaging applications. Chem Eur J. 2015;21:13004–11.

    Article  CAS  Google Scholar 

  14. Qu S, Zhou D, Li D, Ji W, Jing P, Han D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv Mater. 2016;28:3516–21.

    Article  CAS  Google Scholar 

  15. Zhu X, Zhao T, Nie Z, Liu Y, Yao S. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal Chem. 2015;87:8524–30.

    Article  CAS  Google Scholar 

  16. Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–86.

    Article  CAS  Google Scholar 

  17. Zhou J, Yang Y, Zhang C-y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun. 2013;49:8605–7.

    Article  CAS  Google Scholar 

  18. Tang J, Zhang Y, Kong B, Wang Y, Da P, Li J, et al. Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface. Nano Lett. 2014;14:2702–8.

    Article  CAS  Google Scholar 

  19. Wang F, Chen Y-h, Liu C-y, Ma D-g. White light-emitting devices based on carbon dots’ electroluminescence. Chem Commun. 2011;47:3502–4.

    Article  CAS  Google Scholar 

  20. Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, et al. Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun. 2015;51:2950–3.

    Article  CAS  Google Scholar 

  21. Wang F, Xie Z, Zhang H, Liu C-y, Zhang Y-g. Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater. 2011;21:1027–31.

    Article  CAS  Google Scholar 

  22. Liu C, Bao L, Tang B, Zhao J-Y, Zhang Z-L, Xiong L-H, et al. Fluorescence-converging carbon nanodots-hybridized silica nanosphere. Small. 2016;12:4702–6.

    Article  CAS  Google Scholar 

  23. Liu Y, Ma Y-j, Liu C-y, Zhang Z-y, Yang W-d, Nie S-d, et al. The effective removal of Cr(VI) ions by carbon dot-silica hybrids driven by visible light. RSC Adv. 2016;6:68530–7.

    Article  CAS  Google Scholar 

  24. Qiu H, Jiang S, Liu X. N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J Chromatogr A. 2006;1103:265–70.

    Article  CAS  Google Scholar 

  25. Shen A, Guo Z, Yu L, Cao L, Liang X. A novel zwitterionic HILIC stationary phase based on “thiol-ene” click chemistry between cysteine and vinyl silica. Chem Commun. 2011;47:4550–2.

    Article  CAS  Google Scholar 

  26. Aral T, Aral H, Ziyadanoğulları B, Ziyadanoğulları R. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Talanta. 2015;131:64–73.

    Article  CAS  Google Scholar 

  27. Qiu H, Zhang M, Gu T, Takafuji M, Ihara H. A sulfonic-azobenzene-grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography. Chem Eur J. 2013;19:18004–10.

    Article  CAS  Google Scholar 

  28. Lu J, Zhang W, Zhang Y, Zhao W, Hu K, Yu A, et al. A new stationary phase for high performance liquid chromatography: Calix[4]arene derivatized chitosan bonded silica gel. J Chromatogr A. 2014;1350:61–7.

    Article  CAS  Google Scholar 

  29. Qiu H, Mallik AK, Sawada T, Takafuji M, Ihara H. New surface-confined ionic liquid stationary phases with enhanced chromatographic selectivity and stability by co-immobilization of polymerizable anion and cation pairs. Chem Commun. 2012;48:1299–301.

    Article  CAS  Google Scholar 

  30. Ru KB. Low melting mixtures in organic synthesis—an alternative to ionic liquids? Green Chem. 2012;14:2969–82.

    Article  Google Scholar 

  31. Carriazo D, Serrano MC, Gutierrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev. 2012;41:4996–5014.

    Article  CAS  Google Scholar 

  32. Tereshatov EE, Boltoeva MY, Folden CM. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids. Green Chem. 2016;18:4616–22.

    Article  CAS  Google Scholar 

  33. Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–82.

    Article  CAS  Google Scholar 

  34. Nam MW, Zhao J, Lee MS, Jeong JH, Lee J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem. 2015;17:1718–27.

    Article  CAS  Google Scholar 

  35. Liao H-G, Jiang Y-X, Zhou Z-Y, Chen S-P, Sun S-G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure–functionality relationships in electrocatalysis. Angew Chem Int Ed. 2008;47:9100–3.

    Article  CAS  Google Scholar 

  36. Wagle DV, Zhao H, Baker GA. Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res. 2014;47:2299–308.

    Article  CAS  Google Scholar 

  37. Querejeta-Fernández A, Hernández-Garrido JC, Yang H, Zhou Y, Varela A, Parras M, et al. Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano. 2012;6:3800–12.

    Article  Google Scholar 

  38. Gu T, Zhang M, Chen J, Qiu H. A novel green approach for the chemical modification of silica particles based on deep eutectic solvents. Chem Commun. 2015;51:9825–8.

    Article  CAS  Google Scholar 

  39. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, et al. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem. 2014;86:9846–52.

    Article  CAS  Google Scholar 

  40. Li Y, Xu L, Chen T, Liu X, Xu Z, Zhang H. Carbon nanoparticles from corn stalk soot and its novel application as stationary phase of hydrophilic interaction chromatography and per aqueous liquid chromatography. Anal Chim Acta. 2012;726:102–8.

    Article  CAS  Google Scholar 

  41. Zhang M, Mallik AK, Takafuji M, Ihara H, Qiu H. Versatile ligands for high-performance liquid chromatography: an overview of ionic liquid-functionalized stationary phases. Anal Chim Acta. 2015;887:1–16.

    Article  CAS  Google Scholar 

  42. Qiu H, Mallik AK, Takafuji M, Jiang S, Ihara H. New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst. 2012;137:2553–5.

    Article  CAS  Google Scholar 

  43. Melnikov SM, Höltzel A, Seidel-Morgenstern A, Tallarek U. A molecular dynamics study on the partitioning mechanism in hydrophilic interaction chromatography. Angew Chem Int Ed. 2012;51:6251–4.

    Article  CAS  Google Scholar 

  44. Hemström P, Irgum K. Hydrophilic interaction chromatography. J Sep Sci. 2006;29:1784–821.

    Article  Google Scholar 

  45. Guo Y, Gaiki S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A. 2011;1218:5920–38.

    Article  CAS  Google Scholar 

  46. Liang T, Fu Q, Shen A, Wang H, Jin Y, Xin H, et al. Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography. J Chromatogr A. 2015;1388:110–8.

    Article  CAS  Google Scholar 

  47. Yang FQ, Li SP. Effects of sample preparation methods on the quantification of nucleosides in natural and cultured Cordyceps. J Pharm Biomed Anal. 2008;48:231–5.

    Article  CAS  Google Scholar 

  48. Gong YX, Li SP, Li P, Liu JJ, Wang YT. Simultaneous determination of six main nucleosides and bases in natural and cultured Cordyceps by capillary electrophoresis. J Chromatogr A. 2004;1055:215–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the “Hundred Talents Program” of Chinese Academy of Sciences and the National Natural Science Foundation of China (21475142, 21611140105) and the funds for Distinguished Young Scientists of Gansu (1506RJDA281) and the top priority program of “One-Three-Five” Strategic Planning of Lanzhou Institute of Chemical Physics, CAS, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongdeng Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Qiao, X., Cai, T. et al. Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem 409, 2401–2410 (2017). https://doi.org/10.1007/s00216-017-0187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0187-z

Keywords

Navigation