Skip to main content
Log in

Divide and conquer: cleavable cross-linkers to study protein conformation and protein–protein interactions

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chemical cross-linking combined with mass spectrometry (MS) and computational modeling has evolved as an alternative method to address fundamental questions in structural biology. The constraints revealed by the cross-links yield valuable distance information and allow one to deduce three-dimensional structural information on very large and transient protein complexes. During the past few years, technical advances in the cross-linking/MS approach have been enormous, mainly owing to the fantastic advances in MS technology, and it is easily overlooked that significant progress has been made in the design of novel cross-linking reagents. In this review, the advent of cleavable cross-linking reagents will be highlighted. In particular, gas-phase (MS-) cleavable cross-linkers offer unique properties for an automated, data-dependent assignment of cross-linked products based on the generation of characteristic fragment ion signatures in MS/MS and MS3 spectra. Therefore, MS-cleavable cross-linkers are envisioned to hold the key for proteome-wide applications of the chemical cross-linking/MS approach, not only to delineate the conformation of single proteins but also to decipher protein interaction networks.

Outline of the analytical strategy using cleavable cross-linkers in combination with MS to conduct protein conformational and protein interaction studies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Azide-A-DSBSO:

Azide-tagged, acid-cleavable disuccinimidyl bissulfoxide

BAMG:

Bis(succinimidyl)-3-azidomethyl glutarate

BID:

N-benzyliminodiacetoyloxy succinimide

BuUrBu:

4-{3-[3-(2,5-dioxo-pyrrolidine-1-yloxycarbonyl) propyl]ureido}butyric acid 2,5-dioxo-pyrrolidine-1-yl ester

CBDPS:

Cyanurbiotindipropionyl succinimide

CID:

Collision-induced dissociation

DSBU:

Disuccinimidyl dibutyric urea

DSSO:

Disuccinimidyl sulfoxide

DTSSP:

3,3′-dithiobis(sulfosuccinimidyl propionate)

ESI:

Electrospray ionization

ETD:

Electron transfer dissociation

HCD:

Higher-energy collision-induced dissociation

IRMPD:

Infrared multiphoton dissociation

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NHS:

N-hydroxysuccinimide

PIR:

Protein interaction reporter

RISE:

Reporter ion scan event

SDAD:

Succinimidyl 2-([4,4′-azipentanamido]ethyl)-1,3′-dithiopropionate

SDS-PAGE:

Sodium dodecyl polyacrylamide gel electrophoresis

SuDP:

Disuccinimidylsuccinamyl aspartyl proline

References

  1. Young MM, Tang N, Hempel JC, et al. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A. 2000;97(11):5802–6.

    Article  CAS  Google Scholar 

  2. Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev. 2006;25(4):663–82.

    Article  CAS  Google Scholar 

  3. Leitner A, Walzthoeni T, Kahraman A, et al. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics. 2010;9(8):1634–49.

    Article  CAS  Google Scholar 

  4. Petrotchenko EV, Borchers CH. Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev. 2010;29(6):862–7.

    Article  CAS  Google Scholar 

  5. Rappsilber J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol. 2011;173(3):530–40.

    Article  CAS  Google Scholar 

  6. Sharon M, Robinson CV. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem. 2007;76:167–93.

    Article  CAS  Google Scholar 

  7. Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008;5(11):927–33.

    Article  CAS  Google Scholar 

  8. Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics. 2012;9(5):497–504.

    Article  CAS  Google Scholar 

  9. Yan Y, Chen G, Wei H, et al. Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin. J Am Soc Mass Spectrom. 2014;25(12):2084–92.

    Article  CAS  Google Scholar 

  10. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmström L. Cross-link guided molecular modeling with ROSETTA. PLoS One. 2013;8(9), e73411. doi:10.1371/journal.pone.0073411.

    Article  CAS  Google Scholar 

  11. Kalkhof S, Haehn S, Paulsson M, Smyth N, Meiler J, Sinz A. Computational modeling of laminin N-terminal domains using sparse distance constraints from disulfide bonds and chemical cross-linking. Proteins. 2010;78(16):3409–27.

    Article  CAS  Google Scholar 

  12. Schilling B, Row RH, Gibson BW, Guo X, Young MM. MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. J Am Soc Mass Spectrom. 2003;14(8):834–50.

    Article  CAS  Google Scholar 

  13. Bruce JE. In vivo protein complex topologies: sights through a cross-linking lens. Proteomics. 2012;12(10):1565–75.

    Article  CAS  Google Scholar 

  14. Paramelle D, Miralles G, Subra G, Martinez J. Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics. 2013;13(3-4):438–56.

    Article  CAS  Google Scholar 

  15. Sinz A. The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert Rev Proteomics. 2014;11(6):733–43.

    Article  CAS  Google Scholar 

  16. Holding AN. XL-MS: protein cross-linking coupled with mass spectrometry. Methods. 2015;89:54–63.

    Article  CAS  Google Scholar 

  17. Liu F, Heck AJ. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol. 2015;35:100–8.

    Article  Google Scholar 

  18. Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci. 2016;41(1):20–32.

    Article  CAS  Google Scholar 

  19. Tran BQ, Goodlett DR, Goo YA. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics. Biochim Biophys Acta. 2016;1864(1):123–9.

    Article  CAS  Google Scholar 

  20. Bennett KL, Kussmann M, Björk P, et al. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping–a novel approach to assess intermolecular protein contacts. Protein Sci. 2000;9(8):1503–18.

    Article  CAS  Google Scholar 

  21. Zorn M, Ihling CH, Golbik R, Sawers RG, Sinz A. Mapping cell envelope and periplasm protein interactions of Escherichia coli respiratory formate dehydrogenases by chemical cross-linking and mass spectrometry. J Proteome Res. 2014;13(12):5524–35.

    Article  CAS  Google Scholar 

  22. Kasper PT, Back JW, Vitale M, et al. An aptly positioned azido group in the spacer of a protein cross-linker for facile mapping of lysines in close proximity. ChemBioChem. 2007;8(11):1281–92.

    Article  CAS  Google Scholar 

  23. Buncherd H, Roseboom W, Ghavim B, et al. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases. J Chromatogr A. 2014;1348:34–46.

    Article  CAS  Google Scholar 

  24. Gardner MW, Vasicek LA, Shabbir S, Anslyn EV, Brodbelt JS. Chromogenic cross-linker for the characterization of protein structure by infrared multiphoton dissociation mass spectrometry. Anal Chem. 2008;80(13):4807–19.

    Article  CAS  Google Scholar 

  25. Gardner MW, Brodbelt JS. Preferential cleavage of N-N hydrazone bonds for sequencing bis-arylhydrazone conjugated peptides by electron transfer dissociation. Anal Chem. 2010;82(13):5751–9.

    Article  CAS  Google Scholar 

  26. Hage C, Ihling CH, Götze M, Schäfer M, Sinz A. Dissociation behavior of a TEMPO-active ester cross-linker for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) in negative ESI-MS. J Am Soc Mass Spectrom. 2016. doi:10.1007/s13361-016-1426-9.

  27. Back JW, Hartog AF, Dekker HL, Muijsers AO, de Koning LJ, de Jong L. A new crosslinker for mass spectrometric analysis of the quaternary structure of protein complexes. J Am Soc Mass Spectrom. 2001;12(2):222–7.

    Article  CAS  Google Scholar 

  28. Soderblom EJ, Goshe MB. Collision-induced dissociative chemical cross-linking reagents and methodology: applications to protein structural characterization using tandem mass spectrometry analysis. Anal Chem. 2006;78(23):8059–68.

    Article  CAS  Google Scholar 

  29. Soderblom EJ, Bobay BG, Cavanagh J, Goshe MB. Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents. Rapid Commun Mass Spectrom. 2007;21(21):3395–408.

    Article  CAS  Google Scholar 

  30. Mák M, Mezö G, Skribanek Z, Hudecz F. Stability of Asp-Pro bond under high and low energy collision induced dissociation conditions in the immunodominant epitope region of herpes simplex virion glycoprotein D. Rapid Commun Mass Spectrom. 1998;12(13):837–42.

    Article  Google Scholar 

  31. Dreiocker F, Müller MQ, Sinz A, Schäfer M. Collision-induced dissociative chemical cross-linking reagent for protein structure characterization: applied Edman chemistry in the gas phase. J Mass Spectrom. 2010;45(2):178–89.

    Article  CAS  Google Scholar 

  32. Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A. Fragmentation behavior of a thiourea-based reagent for protein structure analysis by collision-induced dissociative chemical cross-linking. J Mass Spectrom. 2010;45(8):880–91.

    Article  Google Scholar 

  33. Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A. Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal Chem. 2010;82(16):6958–68.

    Article  Google Scholar 

  34. Arlt C, Götze M, Ihling CH, Hage C, Schäfer M, Sinz A. An integrated workflow for structural proteomics studies based on cross-linking/mass spectrometry with an MS/MS cleavable cross-linker. Anal Chem. 2016;88(16):7930–7.

    Article  CAS  Google Scholar 

  35. Lu Y, Tanasova M, Borhan B, Reid GE. Ionic reagent for controlling the gas-phase fragmentation reactions of cross-linked peptides. Anal Chem. 2008;80(23):9279–87.

    Article  CAS  Google Scholar 

  36. Kao A, Randall A, Yang Y, et al. Mapping the structural topology of the yeast 19S proteasomal regulatory particle using chemical cross-linking and probabilistic modeling. Mol Cell Proteomics. 2012;11(12):1566–77.

    Article  Google Scholar 

  37. Benda C, Ebert J, Scheltema RA, et al. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol Cell. 2014;56(1):43–54.

    Article  CAS  Google Scholar 

  38. Liu F, Rijkers DT, Post H, Heck AJ. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods. 2015;12(12):1179–84.

    Article  CAS  Google Scholar 

  39. Petrotchenko EV, Serpa JJ, Borchers CH. An isotopically coded CID-cleavable biotinylated cross-linker for structural proteomics. Mol Cell Proteomics. 2011;10(2):M110.001420. doi:10.1074/mcp.M110.001420.

    Article  Google Scholar 

  40. Tang X, Munske GR, Siems WF, Bruce JE. Mass spectrometry identifiable cross-linking strategy for studying protein-protein interactions. Anal Chem. 2005;77(1):311–8.

    Article  CAS  Google Scholar 

  41. Trester-Zedlitz M, Kamada K, Burley SK, Fenyö D, Chait BT, Muir TW. A modular cross-linking approach for exploring protein interactions. J Am Chem Soc. 2003;125(9):2416–25.

    Article  CAS  Google Scholar 

  42. Kaake RM, Wang X, Burke A, et al. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol Cell Proteomics. 2014;13(12):3533–43. doi:10.1074/mcp.M114.042630.

    Article  CAS  Google Scholar 

  43. Chowdhury SM, Munske GR, Tang X, Bruce JE. Collisionally activated dissociation and electron capture dissociation of several mass spectrometry-identifiable chemical cross-linkers. Anal Chem. 2006;78(24):8183–93.

    Article  CAS  Google Scholar 

  44. Weisbrod CR, Chavez JD, Eng JK, Yang L, Zheng C, Bruce JE. In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J Proteome Res. 2013;12(4):1569–79.

    Article  CAS  Google Scholar 

  45. Zhang H, Tang X, Munske GR, Tolic N, Anderson GA, Bruce JE. Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteomics. 2009;8(3):409–20.

    Article  CAS  Google Scholar 

  46. Tan D, Li Q, Zhang MJ, Liu C, Ma C, Zhang P, et al. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. Elife. 2016;5. doi:10.7554/eLife.12509.

  47. Götze M, Pettelkau J, Fritzsche R, Ihling CH, Schäfer M, Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J Am Soc Mass Spectrom. 2015;26(1):83–97.

    Article  Google Scholar 

  48. Gutierrez CB, Yu C, Novitsky EJ, Huszagh AS, Rychnovsky SD, Huang L. Developing a novel acidic residue reactive and sulfoxide-containing MS-cleavable homobifunctional cross-linker for probing protein-protein interactions. Anal Chem. 2016;88(16):8315–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AS gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG project Si 867/15-2), the region of Saxony-Anhalt, and the EU (COST Action BM1403). AS thanks Dr. C. Ihling for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sinz.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinz, A. Divide and conquer: cleavable cross-linkers to study protein conformation and protein–protein interactions. Anal Bioanal Chem 409, 33–44 (2017). https://doi.org/10.1007/s00216-016-9941-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9941-x

Keywords

Navigation