Skip to main content
Log in

Thioflavin T behaves as an efficient fluorescent ligand for label-free ATP aptasensor

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, we for the first time demonstrated thioflavin T (ThT) as an efficient fluorescent ligand for 27-mer ATP-binding aptamer (ABA27), providing a novel signal readout mode for label-free selective ATP detection. ABA27 can promote the fluorescence emission of ThT with an unprecedentedly high efficiency, attributed to the specific structure of ABA27 rather than the G-tracts. Polyacrylamide gel electrophoresis, fluorescence spectroscopy, and fluorometric titration reveal that ThT interacts with ABA27 with a lower binding affinity (Kd ~89 μM) than ATP, which allows ATP to easily compete with ThT for the DNA binder. In the presence of ThT, adding ATP induces ABA27 to undergo a structural change, thereby not favoring the binding to ThT, verified by circular dichroism and UV-Vis absorption spectroscopy. As a result, the fluorescence intensity of ThT decreases dramatically, enabling the sensitive detection of ATP with high selectivity over other analogs. Such a sensing strategy may make ThT able to serve as a facile signal reporter for DNA nanomechanical devices fueled with ATP.

The principle of the displacement of ThT by ATP

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Di Monte DA, Lavasani M, Manning-Bog AB. Environmental factors in Parkinson’s disease. Neurotoxicology. 2002;23(4):487–502.

    Article  Google Scholar 

  2. Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004;56(4):633–54.

    Article  CAS  Google Scholar 

  3. Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res. 2001;1(6):407–18.

    Article  CAS  Google Scholar 

  4. Huizenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochemistry. 1995;34(2):656–65.

    Article  CAS  Google Scholar 

  5. Zhang J, Wang L, Pan D, Song S, Boey FY, Zhang H, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small. 2008;4(8):1196–200.

    Article  CAS  Google Scholar 

  6. Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed. 2005;45(1):90–4.

    Article  Google Scholar 

  7. Zhen SJ, Chen LQ, Xiao SJ, Li YF, Hu PP, Zhan L, et al. Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal Chem. 2010;82(20):8432–7.

    Article  CAS  Google Scholar 

  8. Zhang M, Guo SM, Li YR, Zuo P, Ye BC. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem Commun. 2012;48(44):5488–90.

    Article  CAS  Google Scholar 

  9. Zhang L, Zhu J, Guo S, Li T, Li J, Wang E. Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J Am Chem Soc. 2013;135(7):2403–6.

    Article  CAS  Google Scholar 

  10. Zuo X, Xiao Y, Plaxco KW. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc. 2009;131(20):6944–5.

    Article  CAS  Google Scholar 

  11. Zhou J, Huang H, Xuan J, Zhang J, Zhu J-J. Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP. Biosens Bioelectron. 2010;26(2):834–40.

    Article  CAS  Google Scholar 

  12. Wang Q, Huang J, Yang X, Wang K, He L, Li X, et al. Surface plasmon resonance detection of small molecule using split aptamer fragments. Sensor Actuators B Chem. 2011;156(2):893–8.

    Article  CAS  Google Scholar 

  13. Wang J, Munir A, Zhou HS. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta. 2009;79(1):72–6.

    Article  CAS  Google Scholar 

  14. Zhang K, Wang K, Zhu X, Xie M. A label-free kissing complexes-induced fluorescence aptasensor using DNA-templated silver nanoclusters as a signal transducer. Biosens Bioelectron. 2015;78:154–9.

    Article  Google Scholar 

  15. Merino EJ, Weeks KM. Fluorogenic resolution of ligand binding by a nucleic acid aptamer. J Am Chem Soc. 2003;125(41):12370–1.

    Article  CAS  Google Scholar 

  16. Li X, Peng Y, Chai Y, Yuan R, Xiang Y. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun. 2016;52(18):3673–6.

    Article  CAS  Google Scholar 

  17. Li N, Ho CM. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc. 2008;130(8):2380–1.

    Article  CAS  Google Scholar 

  18. Li Q, Wang YD, Shen GL, Tang H, Yu RQ, Jiang JH. Split aptamer mediated endonuclease amplification for small-molecule detection. Chem Commun. 2015;51(20):4196–9.

    Article  CAS  Google Scholar 

  19. Xu Z, Sato Y, Nishizawa S, Teramae N. Signal-off and signal-on design for a label-free aptasensor based on target-induced self-assembly and abasic-site-binding ligands. Chemistry. 2009;15(40):10375–8.

    Article  CAS  Google Scholar 

  20. Maeda R, Yaku H, Nakabayashi T, Murashima T, Sugimoto N, Ohta N, et al. DNA G-quadruplex detection system employing a protein fibril ligand. Telomere Telomerase. 2015;2:e691.

    Google Scholar 

  21. Levine H. Thioflavine T interaction with synthetic Alzheimer's disease β‐amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 1993;2(3):404–10.

    Article  CAS  Google Scholar 

  22. Liu L, Shao Y, Peng J, Huang C, Liu H, Zhang L. Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor. Anal Chem. 2014;86(3):1622–31.

    Article  CAS  Google Scholar 

  23. Chen J, Lin J, Zhang X, Cai S, Wu D, Li C, et al. Label-free fluorescent biosensor based on the target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection. Anal Chim Acta. 2014;817:42–7.

    Article  CAS  Google Scholar 

  24. Renaud de la Faverie A, Guedin A, Bedrat A, Yatsunyk LA, Mergny JL. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014;42(8):e65.

    Article  CAS  Google Scholar 

  25. Zhao D, Dong X, Jiang N, Zhang D, Liu C. Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes. Nucleic Acids Res. 2014;42(18):11612–21.

    Article  CAS  Google Scholar 

  26. Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar PI, Bhasikuttan AC. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J Am Chem Soc. 2013;135(1):367–76.

    Article  CAS  Google Scholar 

  27. Xu S, Li Q, Xiang J, Yang Q, Sun H, Guan A, et al. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci Rep. 2016;6:24793.

    Article  CAS  Google Scholar 

  28. Lee IJ, Patil SP, Fhayli K, Alsaiari S, Khashab NM. Probing structural changes of self assembled i-motif DNA. Chem Commun. 2015;51(18):3747–9.

    Article  CAS  Google Scholar 

  29. Liu X, Hua X, Fan Q, Chao J, Su S, Huang YQ, et al. Thioflavin T as an efficient G-quadruplex inducer for the highly sensitive detection of thrombin using a new foster resonance energy transfer system. ACS Appl Mater Interfaces. 2015;7(30):16458–65.

    Article  CAS  Google Scholar 

  30. Tan X, Wang Y, Armitage BA, Bruchez MP. Label-free molecular beacons for biomolecular detection. Anal Chem. 2014;86(21):10864–9.

    Article  CAS  Google Scholar 

  31. Huang Z, Ge J, Liu L, Jiang J, Shen G, Yu R. A novel label-free biosensor based on self-assembled aptamer/GO architecture for sensitive detection of biomolecules. Anal Methods. 2015;7(13):5606–10.

    Article  CAS  Google Scholar 

  32. Helwa Y, Dave N, Froidevaux R, Samadi A, Liu J. Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl Mater Interfaces. 2012;4(4):2228–33.

    Article  CAS  Google Scholar 

  33. Li S, Chen D, Zhou Q, Wang W, Gao L, Jiang J, et al. A general chemiluminescence strategy for measuring aptamer-target binding and target concentration. Anal Chem. 2014;86(11):5559–66.

    Article  CAS  Google Scholar 

  34. Amdursky N, Gepshtein R, Erez Y, Koifman N, Huppert D. Pressure effect on the nonradiative process of thioflavin-T. J Phys Chem A. 2011;115(24):6481–7.

    Article  CAS  Google Scholar 

  35. Stsiapura VI, Maskevich AA, Tikhomirov SA, Buganov OV. Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents. J Phys Chem A. 2010;114(32):8345–50.

    Article  CAS  Google Scholar 

  36. Singh PK, Kumbhakar M, Pal H, Nath S. Viscosity effect on the ultrafast bond twisting dynamics in an amyloid fibril sensor: thioflavin-T. J Phys Chem B. 2010;114(17):5920–7.

    Article  CAS  Google Scholar 

  37. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B. 2008;112(49):15893–902.

    Article  CAS  Google Scholar 

  38. Lin CH, Patel DJ. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem Biol. 1997;4(11):817–32.

    Article  CAS  Google Scholar 

  39. Liao D, Jiao H, Wang B, Lin Q, Yu C. KF polymerase-based fluorescence aptasensor for the label-free adenosine detection. Analyst. 2012;137(4):978–82.

    Article  CAS  Google Scholar 

  40. Jhaveri SD, Kirby R, Conrad R, Maglott EJ, Bowser M, Kennedy RT, et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc. 2000;122(11):2469–73.

    Article  CAS  Google Scholar 

  41. Cai L, Chen ZZ, Dong XM, Tang HW, Pang DW. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter. Biosens Bioelectron. 2011;29(1):46–52.

    Article  CAS  Google Scholar 

  42. Zhang P, Wang C, Zhao J, Xiao A, Shen Q, Li L, et al. Near infrared-guided smart nanocarriers for microRNA-controlled release of doxorubicin/siRNA with intracellular ATP as fuel. ACS Nano. 2016;10(3):3637–47.

    Article  CAS  Google Scholar 

  43. Mo R, Jiang T, DiSanto R, Tai W, Gu Z. ATP-triggered anticancer drug delivery. Nat Commun. 2014;5:3364.

    Article  Google Scholar 

  44. Lin C, Cai Z, Wang Y, Zhu Z, Yang CJ, Chen X. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise. Anal Chem. 2014;86(14):6758–62.

    Article  CAS  Google Scholar 

  45. Yang B, Zhang XB, Kang LP, Shen GL, Yu RQ, Tan W. Target-triggered cyclic assembly of DNA-protein hybrid nanowires for dual-amplified fluorescence anisotropy assay of small molecules. Anal Chem. 2013;85(23):11518–23.

    Article  CAS  Google Scholar 

  46. Mo R, Jiang T, Sun W, Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials. 2015;50:67–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 21575133), National Key Research and Development Program (no. 2016YFA0201300), and the Recruitment Program of Global Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Peng, P., Liu, S. et al. Thioflavin T behaves as an efficient fluorescent ligand for label-free ATP aptasensor. Anal Bioanal Chem 408, 7927–7934 (2016). https://doi.org/10.1007/s00216-016-9926-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9926-9

Keywords

Navigation