Skip to main content
Log in

Conducting polymers in electrochemical sensing: factors influencing the electroanalytical signal

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The paper highlights the intrinsic role of the conducting polymers (CPs) in CP-based electrochemical sensing devices. The effects of specific parameters of the electrochemical synthesis and overall measurement protocol, such as nature of the solvent and doping ions, the characteristics of the electrochemical polymerisation procedure, the nature of the CP-carrying substrates, and the composition of the medium used for the electroanalytical measurement, are discussed in an attempt to provide guidelines necessary for optimisation of CP-based electrochemical sensing. The lesser stability of CPs is also addressed as one of the main possible drawbacks of these materials in comparison to inorganic-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, Mac Diarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun. 1977;16:578–80.

    Article  Google Scholar 

  2. McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev. 2000;100:2537–74.

    Article  CAS  Google Scholar 

  3. Gangopadhyay R, De A. Conducting polymer nanocomposites: a brief overview. Chem Mater. 2000;12:608–22.

    Article  CAS  Google Scholar 

  4. Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nat Mater. 2003;2:19–24.

    Article  CAS  Google Scholar 

  5. Malinauskas A, Garjonyte R, Mažeikiene R, Jurevičiute I. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta. 2004;64:121–9.

    Article  CAS  Google Scholar 

  6. Ramanavicius A, Ramanaviciene A, Malinauskas A. Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta. 2006;51:6025–37.

    Article  CAS  Google Scholar 

  7. Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemical sensors and arrays. Anal Chim Acta. 2008;614:1–26.

    Article  CAS  Google Scholar 

  8. Janata J, Josowicz M. Organic semiconductors in potentiometric gas sensing. J Solid State Electrochem. 2009;13:41–9.

    Article  CAS  Google Scholar 

  9. Potje-Kamloth K. Gas sensing with conducting polymers. In: Cosnier S, Karyakin A, editors. Electropolymerization. Concepts, materials, applications. Weinheim: Wiley; 2010. p. 153–72.

    Chapter  Google Scholar 

  10. Bobacka J, Ivaska A. Chemical sensors based on conducting polymers. In: Cosnier S, Karyakin A, editors. Electropolymerization. Concepts, materials, applications. Weinheim: Wiley; 2010. p. 173–88.

    Chapter  Google Scholar 

  11. Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem. 2012;402:3177–204.

    Article  CAS  Google Scholar 

  12. Otero TF, Martinez JG, Arias-Pardilla J. Biomimetic electrochemistry from conducting polymers. A review. Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim Acta. 2012;84:112–28.

    Article  CAS  Google Scholar 

  13. Zanardi C, Terzi F, Seeber R. Polythiophene and polythiophene-based composites in amperometric sensing. Anal Bioanal Chem. 2013;405:509–31.

    Article  CAS  Google Scholar 

  14. Janaky C, Visy C. Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Anal Bioanal Chem. 2013;405:3489–511.

    Article  CAS  Google Scholar 

  15. Tsakova V. Conducting polymers in electroanalytical medical applications. In: Schlesinger M, editor. Applications of electrochemistry in medicine, modern aspects of electrochemistry, vol. 56. New York: Springer Science+Business Media; 2013. p. 283–342.

    Chapter  Google Scholar 

  16. Song E, Choi JW. Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials. 2013;3:498–523.

    Article  CAS  Google Scholar 

  17. Hangarter CM, Chartuprayoon N, Hernández SC, Choa Y, Myung NV. Hybridized conducting polymer chemiresistive nano-sensors. Nano Today. 2013;8:39–55.

    Article  CAS  Google Scholar 

  18. Oueiny C, Berlioz S, Perrin FX. Carbon nanotube–polyaniline composites. Progr Polym Sci. 2014;39:707–48.

    Article  CAS  Google Scholar 

  19. Lei W, Si W, Xu Y, Gu Z, Hao Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta. 2014;181:707–22.

    Article  CAS  Google Scholar 

  20. Correa DS, Medeiros ES, Oliveira JE, Paterno LG, Mattoso LHC. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications. J Nanosci Nanotechnol. 2014;14:6509–27.

    Article  CAS  Google Scholar 

  21. Fratoddi I, Venditti I, Cametti C, Russo MV. Chemiresistive polyaniline-based gas sensors: a mini review. Sens Actuators B. 2015;220:534–48.

    Article  CAS  Google Scholar 

  22. Lakard B, Carquigny S, Segut O, Patois T, Lakard S. Gas sensors based on electrodeposited polymers. Metals. 2015;5:1371–86.

    Article  CAS  Google Scholar 

  23. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv. 2011;29:169–88.

    Article  CAS  Google Scholar 

  24. Gerard M, Chaubey A, Malhotra BD. Application of conducting polymers to biosensors. Biosens Bioelectron. 2002;17:345–59.

    Article  CAS  Google Scholar 

  25. Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sens Actuators B. 2003;91:117–27.

    Article  CAS  Google Scholar 

  26. Vidal JC, Garcia-Ruiz E, Castillo JR. Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim Acta. 2003;143:93–111.

    Article  CAS  Google Scholar 

  27. Ahuja T, Mir IA, Kumar D, Rajesh. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials. 2007;28:791–805.

    Article  CAS  Google Scholar 

  28. Xia L, Wei Z, Wan M. Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci. 2010;341:1–11.

    Article  CAS  Google Scholar 

  29. Cosnier S, Holzinger M. Bisensors based on electropolymerized films. In: Cosnier S, Karyakin A, editors. Electropolymerization. Concepts, materials, applications. Weinheim: Wiley; 2010. p. 189–213.

    Chapter  Google Scholar 

  30. Cosnier S, Holzinger M. Electrosynthesized polymers for biosensing. Chem Soc Rev. 2011;40:2146–56.

    Article  CAS  Google Scholar 

  31. Mulchandani A, Myung NV. Conducting polymer nanowires-based label free biosensors. Curr Opin Biotechnol. 2011;22:502–8.

    Article  CAS  Google Scholar 

  32. Nambiar S, Yeow JTW. Conductive polymer-based sensor for biomedical applications. Biosens Bioelectron. 2011;26:1825–32.

    Article  CAS  Google Scholar 

  33. Dhand C, Das M, Datta M, Malhotra BD. Recent advances in polyaniline based biosensors. Biosens Bioelectron. 2011;26:2811–21.

    Article  CAS  Google Scholar 

  34. Ates M. A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng C. 2013;33:1853–9.

    Article  CAS  Google Scholar 

  35. Seeber R, Terzi F, Zanardi C. Functional materials in amperometric sensing. Polymeric, inorganic, and nanocomposite materials for modified electrodes, monographs in electrochemistry. Ed. by F. Scholz, Springer, 2014.

  36. Seeber R, Pigani L, Terzi F, Zanardi C. Amperometric sensing. A melting pot for material, electrochemical, and analytical sciences. Electrochim Acta. 2015;179:350–63.

    Article  CAS  Google Scholar 

  37. Sugiyasu K, Swager TM. Conducting-polymer-based chemical sensors: transduction mechanisms. Bull Chem Soc Jpn. 2007;80:2074–83.

    Article  CAS  Google Scholar 

  38. Lyons M. In: Michael E, Lyons G, editors. Electroactive polymer electrochemistry. Part 1: fundamentals. New York: Springer Science+Business Media; 1994. p. 237.

    Chapter  Google Scholar 

  39. Bartlett PN, Wallace ENK. The oxidation of ascorbate at poly(aniline)-poly(vinylsulfonate) composite coated electrodes. Phys Chem Chem Phys. 2001;3:1491–6.

    Article  CAS  Google Scholar 

  40. Ward KR, Gara M, Lawrence NS, Hartshorne RS, Compton RG. Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: the effective electrochemical rate constant for non-flat and non-uniform electrode surfaces. J Electroanal Chem. 2013;695:1–9.

    Article  CAS  Google Scholar 

  41. Inzelt G. Conducting polymers. A new era in electrochemistry. Berlin: Springer; 2008.

    Google Scholar 

  42. Pruneanu S, Csahok E, Kertesz V, Inzelt G. Electrochemical quartz crystal microbalance study of the influence of the solution composition on the behaviour of poly(aniline) electrodes. Electrochim Acta. 1998;43:2305–23.

    Article  CAS  Google Scholar 

  43. Plieth W, Bund A, Rammelt U, Neudeck S, Duc L. The role of ion and solvent transport during the redox process of conducting polymers. Electrochim Acta. 2006;51:2366–72.

    Article  CAS  Google Scholar 

  44. Hillman AR, Mohamoud MA. Ion, solvent and polymer dynamics in polyaniline conducting polymer films. Electrochim Acta. 2006;51:6018–24.

    Article  CAS  Google Scholar 

  45. Mohamoud MA, Hillman AR. The effect of anion identity on the viscoelastic properties of polyaniline films during electrochemical film deposition and redox cycling. Electrochim Acta. 2007;53:1207–17.

    Article  Google Scholar 

  46. Hillman AR, Daisley SJ, Bruckenstein S. Ion and solvent transfers and trapping phenomena during n-doping of PEDOT films. Electrochim Acta. 2008;53:3763–71.

    Article  CAS  Google Scholar 

  47. Bruckenstein S, Chen J, Jureviciute I, Hillman AR. Ion and solvent transfers accompanying redox switching of polypyrrole films immersed in divalent anion solutions. Electrochim Acta. 2009;54:3516–25.

    Article  CAS  Google Scholar 

  48. Lyutov V, Tsakova V, Bund A. Microgravimetric study on the formation and redox behavior of poly(2-acrylamido-2-methyl-1-propanesulfonate)-doped thin polyaniline layers. Electrochim Acta. 2011;56:4803–11.

    Article  CAS  Google Scholar 

  49. Lyutov V, Gruia V, Efimov I, Bund A, Tsakova V. An acoustic impedance study of PEDOT layers obtained in aqueous solution. Electrochim Acta. 2016;190:285–93.

    Article  CAS  Google Scholar 

  50. Wang BC, Tang JS, Wang FS. Electrochemical polymerization of aniline. Synth Met. 1987;18:323–8.

    Article  CAS  Google Scholar 

  51. Zotti G, Cattarin S, Comisso N. Cyclic potential sweep electropolymerization of aniline: the role of anions in the polymerization mechanism. J Electroanal Chem. 1988;239:387–96.

    Article  CAS  Google Scholar 

  52. Nunziante P, Pistoia G. Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique. Electrochim Acta. 1989;34:223–8.

    Article  CAS  Google Scholar 

  53. Desilvestro J, Scheifele W. Morphology of electrochemically prepared polyaniline. Influence of polymerization parameters. J Mater Chem. 1993;3:263–72.

    Article  CAS  Google Scholar 

  54. Duic L, Mandic Z, Kovacicek F. The effect of supporting electrolyte on the electrochemical synthesis, morphology, and conductivity of polyaniline. J Polym Sci A. 1994;32:105–11.

    Article  CAS  Google Scholar 

  55. Kaplin DA, Qutubuddin S. Electrochemically synthesized polypyrrole films: effects of polymerization potential and electrolyte type. Polymer. 1995;36:1275–86.

    Article  CAS  Google Scholar 

  56. Tang H, Kitani A, Shiotani M. Effects of anions on electrochemical formation and overoxidation of polyaniline. Electrochim Acta. 1996;41:1561–7.

    Article  CAS  Google Scholar 

  57. Trivedi DC. Influence of the anion on polyaniline. J Solid State Electrochem. 1998;2:85–7.

    Article  CAS  Google Scholar 

  58. Pigani L, Seeber R, Terzi F, Zanardi C. Influence of the nature of the supporting electrolyte on the formation of poly[4,40-bis(butylsulphanyl)-2,20-bithiophene] films. A role for both counter-ion and co-ion in the polymer growth and p-doping processes. J Electroanal Chem. 2004;562:231–9.

    Article  CAS  Google Scholar 

  59. Melato AI, Viana AS, Abrantes LM. Different steps in the electrosynthesis of poly(3,4-ethylenedioxythiophene) on platinum. Electrochim Acta. 2008;54:590–7.

    Article  CAS  Google Scholar 

  60. Lyutov V, Georgiev G, Tsakova V. Comparative study on the electrochemical synthesis of polyaniline in the presence of mono- and poly(2-acrylamido-2-methyl-1-propanesulfonic) acid. Thin Solid Films. 2009;517:6681–8.

    Article  CAS  Google Scholar 

  61. Tamburna E, Orladuccia S, Toschia F, Terranova ML, Passeri D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth Met. 2009;159:406–14.

    Article  Google Scholar 

  62. Otero TF, Martinez JG, Hosaka K, Okuzaki H. Electrochemical characterization of PEDOT–PSS–sorbitol electrodes. Sorbitol changes cation to anion interchange during reactions. J Electroanal Chem. 2011;657:23–7.

    Article  CAS  Google Scholar 

  63. Lyutov VV, Ivanov SD, Mirsky VM, Tsakova VT. Polyaniline doped with polyacrylamidomethylpropane sulfonic acid: electrochemical behavior and conductive properties in neutral solutions. Chem Papers. 2013;67:1002–11.

    Article  CAS  Google Scholar 

  64. Tsakova V, Ilieva G, Filjova D. Role of the anionic dopant of poly(3,4-ethylenedioxythiophene) for the electroanalytical performance: electrooxidation of acetaminophen. Electrochim Acta. 2015;179:343–9.

    Article  CAS  Google Scholar 

  65. Filjova D, Ilieva G, Tsakova V. Electropolymerization of poly(3,4-ethylenedioxythiophene) layers in the presence of different dopants and their effect on the polymer electrocatalytic properties. Oxidation of ascorbic acid and dopamine. Bulg Chem Commun. 2013;45(Special issue A):196–201.

    Google Scholar 

  66. Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C. Optimization of the DPV potential wave form for determination of ascorbic acid on PEDOT-modified electrodes. Sens Actuators B. 2007;121:430–5.

    Article  CAS  Google Scholar 

  67. Aranzazu Heras M, Lupu S, Pigani L, Pirvu C, Seeber R. A poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode coating in the electrooxidation of phenol. Electrochim Acta. 2005;50:1685–91.

    Article  Google Scholar 

  68. Pigani L, Musiani M, Pirvu C, Terzi F, Zanardi C, Seeber R. Electro-oxidation of chlorophenols on poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode. Electrochim Acta. 2007;52:1910–8.

    Article  CAS  Google Scholar 

  69. Komsiyska L, Tsakova V. Ascorbic acid oxidation at non-modified and copper-modified polyaniline and poly-ortho-methoxyaniline coated electrodes. Electroanalysis. 2006;18:807–13.

    Article  CAS  Google Scholar 

  70. Pigani L, Zanfrognini B, Seeber R. PEDOT-modified microelectrodes. Preparation, characterisation and analytical performances. Electroanalysis. 2012;24:1340–7.

    Article  CAS  Google Scholar 

  71. Sekli Belaidi F, Civélas A, Castagnola V, Tsopela A, Mazenq L, Gros P, et al. PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sens Actuators B. 2015;214:1–9.

    Article  Google Scholar 

  72. Cho SH, Park SM. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy. J Phys Chem. 2006;110:25656–64.

    Article  CAS  Google Scholar 

  73. Tsakova V, Milchev A. Electrochemical formation and stability of polyaniline films. Electrochim Acta. 1991;36:1579–83.

    Article  CAS  Google Scholar 

  74. Ding H, Pigani L, Seeber R, Zanardi C. p- and n-doping of electrochemically formed poly(4,4’-bisbutylsulfanyl-2,2’- bithiophene). A novel material with reduced bandgap. J New Mater Electrochem Syst. 2000;3:339–43.

    Google Scholar 

  75. Mazeikiene R, Malinauskas A. Electrochemical stability of polyaniline. Eur Polym J. 2002;38:1947–52.

    Article  CAS  Google Scholar 

  76. Lupu S, Parenti F, Pigani L, Seeber R, Zanardi C. Differential pulse techniques on modified conventional-size and microelectrodes. Electroactivity of poly[4,4-bis(butylsulfanyl)-2,2-bithiophene] coating towards dopamine and ascorbic acid oxidation. Electroanalysis. 2003;15:715–25.

    Article  CAS  Google Scholar 

  77. Rahmanifar MS, Mousavi MF, Shamsipur M, Riahi S. A study on the influence of anionic surfactants on electrochemical degradation of polyaniline. Polym Degrad Stability. 2006;91:3463–8.

    Article  CAS  Google Scholar 

  78. Mazeikiene R, Malinauskas A. Kinetics of the electrochemical degradation of polypyrrole. Polym Degrad Stability. 2002;75:255–8.

    Article  CAS  Google Scholar 

  79. Maksymiuk K. Chemical reactivity of polypyrrole and its relevance to polypyrrole based electrochemical sensors. Electroanalysis. 2006;18:1537–51.

    Article  CAS  Google Scholar 

  80. Thaning EM, Asplund MLM, Nyberg TA, Inganaes OW, von Holst H. Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. J Biomed Mater Res B. 2010;93B:408–15.

    Article  Google Scholar 

  81. Zanfrognini B, Colina A, Heras A, Zanardi C, Seeber R, López-Palacios J. A UV-visible/Raman spectroelectrochemical study of the stability of poly(3,4-ethylendioxythiophene) films. Polym Degrad Stability. 2011;96:2112–9.

    Article  CAS  Google Scholar 

  82. Marchesi LFQP, Simoes FR, Pocrifka LA, Pereira EC. Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B. 2011;115:9570–5.

    Article  CAS  Google Scholar 

  83. Simoes R, Pocrifka LA, Marchesi LFQP, Pereira EC. Investigation of electrochemical degradation process in polyaniline/polystyrene sulfonated self-assembly films by impedance spectroscopy. J Phys Chem B. 2011;115:11092–7.

    Article  CAS  Google Scholar 

  84. Láng GG, Ujvári M, Bazsó F, Vesztergom S, Ujhelyi F. In situ monitoring of the electrochemical degradation of polymer films on metals using the bending beam method and impedance spectroscopy. Electrochim Acta. 2012;73:59–69.

    Article  Google Scholar 

  85. Tóth PS, Janáky C, Berkesi O, Tamm T, Visy C. On the unexpected cation exchange behavior, caused by covalent bond formation between PEDOT and Cl ions: extending the conception for the polymer dopant interactions. J Phys Chem B. 2012;116:5491–500.

    Article  Google Scholar 

  86. Tóth PS, Endrődi B, Janáky C, Visy C. Development of polymer–dopant interactions during electropolymerization, a key factor in determining the redox behaviour of conducting polymers. J Solid State Electrochem. 2015;19:2891–6.

    Article  Google Scholar 

  87. Baek S, Green RA, Poole-Warren LA. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes. J Biomed Mater Res A. 2014;102:2743–54.

    Article  Google Scholar 

  88. Lyutov V, Efimov I, Bund A, Tsakova V. Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of dodecylsulfate and polysulfonic anions—an acoustic impedance study. Electrochim Acta. 2014;122:21–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vessela Tsakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Chemical Sensing Systems with guest editors Maria Careri, Marco Giannetto, and Renato Seeber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsakova, V., Seeber, R. Conducting polymers in electrochemical sensing: factors influencing the electroanalytical signal. Anal Bioanal Chem 408, 7231–7241 (2016). https://doi.org/10.1007/s00216-016-9774-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9774-7

Keywords

Navigation