Skip to main content
Log in

Facile and efficient poly(ethylene terephthalate) fibers-in-tube for online solid-phase microextraction towards polycyclic aromatic hydrocarbons

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Poly(ethylene terephthalate) (polyester) fibers as solid-phase microextraction (SPME) adsorbent were directly filled in a poly(ether ether ketone) (PEEK) tube, for online analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples, coupled with high-performance liquid chromatography. The facile, economic, and environmental polyester fibers-in-tube SPME device exhibited high extraction efficiency, good selectivity for PAHs, and satisfactory durability. Under optimum conditions, the polyester fibers provided satisfactory enhancement factors in the range of 307–1646, and low detection limits ranging from 0.01 to 0.03 μg L−1. The linearity was in the range of 0.03–80 μg L−1 with correlation coefficients (r) ranging from 0.9978 to 0.9997. Limit of quantification was defined as a concentration of the analytes with a ten-time signal-to-noise ratio (S/N = 10) and was in the range of 0.03–0.1 μg L−1. The intra-day and inter-day precisions for quantitative analysis were investigated and the relative standard deviation (RSD) was lower than 5.8 and 6.9 %, respectively. Extraction repeatability was also investigated and its RSD was in the range of 3.8–7.8 %. Finally, the fiber-in-tube SPME device was successfully applied to analyze PAHs in water samples.

Schematic diagrams of polyester fibers-in-tube device and the automated in-tube SPME-HPLC system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Belardi RP, Pawliszyn J. Water Pollut Res J Can. 1989;24:179–91.

    CAS  Google Scholar 

  2. Arthur CL, Pawliszyn J. Anal Chem. 1990;62:2145–8.

    Article  CAS  Google Scholar 

  3. Wu J, Mester Z, Pawliszyn J. Anal Chim Acta. 2000;424:211–22.

    Article  CAS  Google Scholar 

  4. Ahmadi SH, Manbohi A, Heydar KT. Anal Chim Acta. 2015;853:335–41.

    Article  CAS  Google Scholar 

  5. Mei M, Yu J, Huang X, Li H, Lin L, Yuan D. J Chromatogr A. 2015;1385:12–9.

    Article  CAS  Google Scholar 

  6. Kima TY, Alhooshania K, Kabira A, Friesb D-P, Malik A. J Chromatogr A. 2004;1047:165–74.

    Article  Google Scholar 

  7. Fan Y, Feng Y-Q, Zhang J-T, Da S-L, Zhang M. J Chromatogr A. 2005;1074:9–16.

    Article  CAS  Google Scholar 

  8. Pawliszyn J. Wiley-VCH, New York, 1997.

  9. Eisert R, Pawliszyn J. Anal Chem. 1997;69:3140–7.

    Article  CAS  Google Scholar 

  10. Wen Y, Zhou B-S, Xu Y, Jin S-W, Feng Y-Q. J Chromatogr A. 2006;1133:21–8.

    Article  CAS  Google Scholar 

  11. Kataoka H, Lord HL, Pawliszyn J. J Chromatogr A. 2000;880:35–62.

    Article  CAS  Google Scholar 

  12. Campíns-Falc P, Verdú-Andrés J, Sevillano-Cabeza A, Herráez-Hernández R, Molins-Legua C, Moliner-Martinez Y. J Chromatogr A. 2010;1217:2695–702.

    Article  Google Scholar 

  13. Ahmadi F, Assadi Y, Milani Hosseini SMR, Rezaee M. J Chromatogr A. 2006;1101:307–12.

    Article  CAS  Google Scholar 

  14. Chafer-Pericás C, Herraez-Hernández R, Campíns-Falcó P. J Chromatogr A. 2006;1125:159–71.

    Article  Google Scholar 

  15. Fan Y, Feng YQ, Shi ZG, Wang JB. Anal Chim Acta. 2005;543:1–8.

    Article  CAS  Google Scholar 

  16. Kataoka H, Ishizaki A, Nonaka Y, Saito K. Anal Chim Acta. 2009;655:8–29.

    Article  CAS  Google Scholar 

  17. Kataoka H. Anal Bioanal Chem. 2002;373:31–45.

    Article  CAS  Google Scholar 

  18. Lord HL. J Chromatogr A. 2007;1152:2–13.

    Article  CAS  Google Scholar 

  19. Kataoka H. Curr Pharm Anal. 2005;1:65–84.

    Article  CAS  Google Scholar 

  20. Sun M, Feng J, Bu Y, Luo C. J Chromatogr A. 2015;1408:41–8.

    Article  CAS  Google Scholar 

  21. Saito Y, Kawazoe M, Hayashida M, Jinno K. Analyst. 2000;125:807–9.

    Article  CAS  Google Scholar 

  22. Liu X-Y, Ji Y-S, Zhang H-X, Liu M-C. J Chromatogr A. 2008;1212:10–5.

    Article  CAS  Google Scholar 

  23. Li J, Su Q, Li K-Y, Sun C-F, Zhang W-B. Food Chem. 2013;141:3714–20.

  24. Sun M, Feng J, Bu Y, Luo C. J Sep Sci. 2014;37:3691–8.

    Article  CAS  Google Scholar 

  25. Yan X, Wu D, Peng H, Ding K, Duan C, Guan Y. J Chromatogr A. 2012;1244:69–76.

    Article  CAS  Google Scholar 

  26. Chen B, Hu B, He M, Mao X, Zu W. J Chromatogr A. 2012;1227:19–28.

    Article  CAS  Google Scholar 

  27. Wu S, Ye Q, Li N. Constr Build Mater. 2008;22:2111–5.

    Article  Google Scholar 

  28. Tayfura S, Ozenb H, Aksoy A. Constr Build Mater. 2007;21(2):328–37.

    Article  Google Scholar 

  29. Tang WC, Lo Y, Nadeem A. Cement Concrete Comp. 2008;30:403–9.

    Article  CAS  Google Scholar 

  30. Xiao J, Falkner H. Fire Safety J. 2006;41:115–21.

    Article  CAS  Google Scholar 

  31. Bagheri H, Piri-Moghadam H, Es’haghi A. J Chromatogr A. 2011;1218:3952–7.

    Article  CAS  Google Scholar 

  32. Lord H, Pawliszyn J. J Chromatogr A. 2000;885:153–93.

    Article  CAS  Google Scholar 

  33. Zhang J, Zhang W, Bao T, Chen Z. J Chromatogr A. 2015;1388:9–16.

    Article  CAS  Google Scholar 

  34. Ishizaki A, Saito K, Hanioka N, Narimatsu S, Kataoka H. J Chromatogr A. 2010;1217:5555–63.

    Article  CAS  Google Scholar 

  35. Campíns-Falcó P, Verdú-Andrés J, Sevillano-Cabeza A, Molins-Legua C, Herráez-Hernández R. J Chromatogr A. 2008;1211:13–21.

    Article  Google Scholar 

  36. Hu Y, Fan Y, Huang Z, Song C, Li G. Chem Commun. 2012;48:3966–8.

    Article  CAS  Google Scholar 

  37. Zhang W, Zhang Z, Meng J, Zhou W, Chen Z. J Chromatogr A. 2014;1365:19–28.

    Article  CAS  Google Scholar 

  38. Sun M, Feng J, Qiu H, Fan L, Li L, Luo C. J Chromatogr A. 2013;1300:173–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, nos. 21205048 and 21405061), the Shandong Provincial Natural Science Foundation of China (no. ZR2014BQ019) and the Graduate Innovation Foundation of University of Jinan (GIFUJN, no. YCXS15007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Sun or Chuannan Luo.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Feng, J., Sun, M. et al. Facile and efficient poly(ethylene terephthalate) fibers-in-tube for online solid-phase microextraction towards polycyclic aromatic hydrocarbons. Anal Bioanal Chem 408, 4871–4882 (2016). https://doi.org/10.1007/s00216-016-9567-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9567-z

Keywords

Navigation