Skip to main content
Log in

An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe a sensitive aptamer-based sandwich assay for protein detection on microplate by using rolling circle amplification (RCA) coupled with thrombin catalysis. This assay takes advantage of RCA generating long DNA oligonucleotides with repeat thrombin-binding aptamer sequence, specific aptamer affinity binding to achieve multiple thrombin labeling, and enzyme activity of thrombin for signal generation. Protein target is specifically captured by antibody-coated microplate. Then, an oligonucleotide containing an aptamer for protein and a primer sequence is added to form a typical sandwich structure. Following a template encoded with complementary sequence of aptamer for thrombin, RCA reaction extends the primer sequence into a long oligonucleotide. Many thrombin molecules bind with the RCA product. Thrombin catalyzes the conversion of its chromogenic or fluorogenic peptide substrates into detectable products for final quantification of protein targets. We applied this strategy to the detection of a model protein target, platelet-derived growth factor-BB (PDGF-BB). Due to double signal amplifications from RCA and thrombin catalysis, this assay enabled the detection of PDGF-BB as low as 3.1 pM when a fluorogenic peptide substrate was used. This assay provides a new way for signal generation in RCA-involved assay through direct thrombin labeling, circumventing time-consuming preparation of enzyme-conjugate and affinity probes. This method has promise for a variety of analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  CAS  Google Scholar 

  2. Tuerk C, Gold L. Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  Google Scholar 

  3. Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820–5.

    Article  CAS  Google Scholar 

  4. Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, et al. Aptamers facilitating amplified detection of biomolecules. Anal Chem. 2015;87(1):274–92.

    Article  CAS  Google Scholar 

  5. Liu J, Cao Z, Lu Y. Functional nucleic acids sensors. Chem Rev. 2009;109(5):1948–98.

    Article  CAS  Google Scholar 

  6. Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem. 2011;399(9):3157–76.

    Article  CAS  Google Scholar 

  7. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem. 2009;2:241–64.

    Article  CAS  Google Scholar 

  8. Zhou J, Battig MR, Wang Y. Aptamer-based molecular recognition for biosensor development. Anal Bioanal Chem. 2010;398(6):2471–80.

    Article  CAS  Google Scholar 

  9. Deng N, Liang Z, Liang Y, Sui Z, Zhang L, Wu Q, et al. Aptamer modified organic–inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin. Anal Chem. 2012;84(23):10186–90.

    Article  CAS  Google Scholar 

  10. Zhang H, Li F, Dever B, Li XF, Le XC. DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev. 2013;113(4):2812–41.

    Article  CAS  Google Scholar 

  11. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–545.

    Article  CAS  Google Scholar 

  12. Ali MM, Li F, Zhang ZQ, Zhang KX, Kang DK, Ankrum JA, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–41.

    Article  CAS  Google Scholar 

  13. Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu Z, et al. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci U S A. 2000;97(18):10113–9.

    Article  CAS  Google Scholar 

  14. Zhou L, Ou LJ, Chu X, Shen GL, Yu RQ. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem. 2007;79(19):7942–500.

    Article  Google Scholar 

  15. Bi S, Li L, Zhang SS. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Anal Chem. 2010;82(22):9447–54.

    Article  CAS  Google Scholar 

  16. Tang LH, Liu Y, Ali MM, Kang D, Zhao WA, Li JH. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem. 2012;84(11):4711–7.

    Article  CAS  Google Scholar 

  17. Lee J, Icoz K, Roberts A, Ellington AD, Savran CA. Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem. 2010;82(1):197–202.

    Article  CAS  Google Scholar 

  18. Yang LT, Fung CW, Cho EJ, Ellington AD. Real-time rolling circle amplification for protein detection. Anal Chem. 2007;79(9):3320–9.

    Article  CAS  Google Scholar 

  19. Wang QP, Zheng HY, Gao XY, Lin ZY, Chen GN. A label-free ultrasensitive electrochemical aptameric recognition system for protein assay based on hyperbranched rolling circle amplification. Chem Commun. 2013;49(97):11418–20.

    Article  CAS  Google Scholar 

  20. Cao ZJ, Peng QW, Qiu X, Liu CY, Lu JZ. Highly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platform. J Pharm Anal. 2011;1(3):159–65.

    Article  CAS  Google Scholar 

  21. Wang L, Tram K, Ali MM, Salena BJ, Li J, Li Y. Arrest of rolling circle amplification by protein-binding DNA aptamers. Chem Eur J. 2014;20(9):2420–4.

    Article  CAS  Google Scholar 

  22. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992;355(6360):564–6.

    Article  CAS  Google Scholar 

  23. Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol. 1997;272(5):688–98.

    Article  CAS  Google Scholar 

  24. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, et al. Aptamer binding assays for proteins: the thrombin example—a review. Anal Chim Acta. 2014;837:1–15.

    Article  CAS  Google Scholar 

  25. Wu Q, Tsiang M, Sadler JE. Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. J Bio Chem. 1992;267(34):24408–12.

    CAS  Google Scholar 

  26. Zhou G, Huang X, Qu Y. The binding effect of aptamers on thrombin. Biochem Eng J. 2010;52(2–3):117–22.

    Article  CAS  Google Scholar 

  27. Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochem Commun. 2006;8(3):505–11.

    Article  CAS  Google Scholar 

  28. Muller J, Becher T, Braunstein J, Berdel P, Gravius S, Rohrbach F, et al. Profiling of active thrombin in human blood by supramolecular complexes. Angew Chem Int Ed. 2011;50(27):6075–8.

    Article  Google Scholar 

  29. Zhao Q, Li XF, Le XC. Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. Anal Chem. 2011;83(24):9234–6.

    Article  CAS  Google Scholar 

  30. Zhao Q, Wang XF. An aptamer-capture based chromogenic assay for thrombin. Biosens Bioelectron. 2012;34(1):232–7.

    Article  CAS  Google Scholar 

  31. Westermark B, Heldin CH. Platelet-derived growth factor. Structure, function and implications in normal and malignant cell growth. Acta Oncol. 1993;32(2):101–5.

    Article  CAS  Google Scholar 

  32. Heldin CH. Structural and functional studies on platelet-derived growth factor. The EMBO J. 1992;11(12):4251–9.

    CAS  Google Scholar 

  33. Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry. 1996;35(45):14413–24.

    Article  CAS  Google Scholar 

  34. Jin X, Zhao JJ, Zhang LL, Huang Y, Zhao SL. An enhanced fluorescence polarization strategy based on multiple protein–DNA–protein structures for sensitive detection of PDGF-BB. RSC Adv. 2014;4(13):6850–3.

    Article  CAS  Google Scholar 

  35. Li H, Zhu Y, Dong SY, Qiang WB, Sun L, Xu DK. Fast functionalization of silver decahedral nanoparticles with aptamers for colorimetric detection of human platelet-derived growth factor-BB. Anal Chim Acta. 2014;829:48–53.

    Article  CAS  Google Scholar 

  36. Wang P, Song YH, Zhao YJ, Fan AP. Hydroxylamine amplified gold nanoparticle-based aptameric system for highly selective and sensitive detection of platelet-derived growth factor. Talanta. 2013;103:392–7.

    Article  CAS  Google Scholar 

  37. Chang CC, Wei SC, Wu TH, Lee CH, Lin CW. Apatamer-based colorimetric detection of platelet-derived growth factor using unmodified gold nanoparticles. Biosens Bioelectron. 2013;42:119–23.

    Article  CAS  Google Scholar 

  38. Fang XH, Li JJ, Tan WH. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Anal Chem. 2000;72(14):3280–5.

    Article  CAS  Google Scholar 

  39. Zhang H, Li XF, Le XC. Differentiation and detection of PDGF isomers and their receptors by tunable aptamer capillary electrophoresis. Anal Chem. 2009;81(18):7795–800.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the support from National Natural Science Foundation of China (Grant No. 21222503) and Outstanding Youth Talents Program of Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Hao, L. & Zhao, Q. An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection. Anal Bioanal Chem 408, 4715–4722 (2016). https://doi.org/10.1007/s00216-016-9558-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9558-0

Keywords

Navigation