Skip to main content
Log in

Microscope-assisted UV-initiated preparation of well-defined porous polymer monolithic plugs in glass microchips for peptide preconcentration

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, highly defined monolithic beds were prepared in glass microchips by photopolymerization of ethylene glycol methacrylate phosphate (EGMP), acrylamide, and N,N′-methylenebisacrylamide (BAA) using an epifluorescence microscope as UV-irradiation source. Such a fast and easy method allowed precise control of (i) the edge shape, (ii) the location along the microchannel, and (iii) the length of the monolithic plugs within glass microchips. The addition of hydroquinone, a polymerization inhibitor, to the prepolymerization mixture was beneficial for achieving local and robust incorporation of monoliths with sharp edges within microchannels. The monolith length was easily tuned from 160 to 400 μm through simple change in the magnification of the objective and was found to be repeatable (relative standard deviation <7.5%). Further application for on-chip monolith-assisted solid - phase extraction is demonstrated for fluorescently labeled peptide. Both binding and subsequent elution behaviors were found to fully agree with a cation-exchange mechanism in concordance with the presence of phosphate groups at the monolith surface.

In-chip microscope-UV-synthesis of monolithic plugs with sharp edges

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chrom A. 2010;1217:902–24. doi:10.1016/j.chroma.2009.09.073.

    Article  CAS  Google Scholar 

  2. Yu C, Davey MH, Svec F, Fréchet JMJ. Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem. 2001;73:5088–96. doi:10.1021/ac0106288.

    Article  CAS  Google Scholar 

  3. Svec F. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis. 2006;27:947–61. doi:10.1002/elps.200500661.

    Article  CAS  Google Scholar 

  4. Bedair MF, Oleschuk RD. Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry. Anal Chem. 2006;78:1130–8. doi:10.1021/c0514570.

    Article  CAS  Google Scholar 

  5. Rohr T, Yu C, Davey MH, Svec F, Fréchet JMJ. Porous polymer monoliths: simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips. Electrophoresis. 2001;22:3959–67. doi:10.1002/1522-2683(200110)22:18<3959::AID-ELPS3959>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  6. Song S, Singh AK, Shepodd TJ, Kirby BJ. Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes. Anal Chem. 2004;76:2367–73. doi:10.1021/ac035290r.

    Article  CAS  Google Scholar 

  7. Song S, Singh AK, Kirby BJ. Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal Chem. 2004;76:4589–92. doi:10.1021/ac0497151.

    Article  CAS  Google Scholar 

  8. Hecht AH, Sommer GJ, Durland RH, Yang X, Singh AK, Hatch AV. Aptamers as affinity reagents in an integrated electrophoretic lab-on-a-chip platform. Anal Chem. 2010;82:8813–20. doi:10.1021/ac101106m.

    Article  CAS  Google Scholar 

  9. Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem. 2006;78:4976–84. doi:10.1021/ac0600454.

    Article  CAS  Google Scholar 

  10. Thurmann S, Mauritz L, Heck C, Belder D. High-performance liquid chromatography on glass chips using precisely defined porous polymer monoliths as particle retaining elements. J Chrom A. 2014;1370:33–9. doi:10.1016/j.chroma.2014.10.008.

    Article  CAS  Google Scholar 

  11. Yamamoto S, Hirakawa S, Suzuki S. In situ fabrication of ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for capillary electrophoresis of anionic compounds. Anal Chem. 2008;80:8224–30. doi:10.1021/ac801245n.

    Article  CAS  Google Scholar 

  12. Abele S, Nie FQ, Foret F, Paull B, Macka M. UV-LED photopolymerised monoliths. The Analyst. 2008;133:864–6. doi:10.1039/b802693a.

    Article  CAS  Google Scholar 

  13. Dhopeshwarkar R, Sun L, Crooks RM. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip. 2008;5:1148–54. doi:10.1039/b509063f.

    Article  Google Scholar 

  14. Nordman N, Barrios-Lopez B, Laurén S, Suvanto P, Kotiaho T, Franssila S, et al. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry. Electrophoresis. 2015;36:428–32. doi:10.1002/elps.201400278.

    Article  CAS  Google Scholar 

  15. Wang F, Dong J, Jiang X, Ye M, Zou H. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis. Anal Chem. 2007;79:6599–606. doi:10.1021/ac070736f.

    Article  CAS  Google Scholar 

  16. Dong J, Zhou H, Wu R, Ye M, Zou H. Specific capture of phosphopeptides by Zr4 + -modified monolithic capillary column. J Sep Sci. 2007;30:2917–23. doi:10.1002/jssc.200700350.

    Article  CAS  Google Scholar 

  17. Araya-Farias M, Taverna M, Woytasik M, Bayle F, Guerrouache M, Ayed I, et al. A new strategy for simultaneous synthesis and efficient anchorage of polymer monoliths in native PDMS microchips. Polymer. 2015;66:249–58. doi:10.1016/j.polymer.2015.04.039.

    Article  CAS  Google Scholar 

  18. Ladner Y, Cretier G, Faure K. Electrochromatography in cyclic olefin copolymer microchips: a step towards field portable analysis. J Chrom A. 2010;1217:8001–8. doi:10.1016/j.chroma.2010.07.076.

    Article  CAS  Google Scholar 

  19. Ericson C, Holm J, Ericson T, Hjerten S. Electroosmosis and pressure-driven chromatography in chips using continuous beds. Anal Chem. 2000;72:81–7. doi:10.1021/ac990802g.

    Article  CAS  Google Scholar 

  20. Geiser L, Eeltinka S, Svec F, Frechet JMJ. Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate). J Chrom A. 2007;1140:140–6. doi:10.1016/j.chroma.2006.11.079.

    Article  CAS  Google Scholar 

  21. Buchmeiser M. Polymeric monolithic materials: syntheses, properties, functionalization and applications. Polymer. 2007;48:187–2198. doi:10.1016/j.polymer.2007.02.045.

    Article  Google Scholar 

  22. Araya-Farias M, Dziomba S, Carbonnier B, Guerrouache M, Ayed, I, Aboud N, Taverna M, Tran TN.A lab-on-a-chip for monolith-based preconcentration and electrophoresis separation of phosphopeptides. Analyst 2016; In revision.

  23. Kebe SI, Boubaker MB, Guerrouache M, Carbonnier B. Thiol–ene click chemistry for the design of diol porous monoliths with hydrophilic surface interaction ability: a capillary electrochromatography study. New J Chem. 2016;40:6916–23. doi: 10.1039/C6NJ00423G.

    Article  CAS  Google Scholar 

  24. Songa SY, Hana YD, Kimb K, Yang SS, Yoon HC. A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens Bioelectron. 2011;26:3818–24. doi:10.1016/j.bio.2011.02.036.

    Article  Google Scholar 

  25. Chen X, Tolley HD, Lee MLJ. Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins. J Chrom A. 2011;1218:4322–31. doi:10.1016/j.chroma.2011.04.074.

    Article  CAS  Google Scholar 

  26. Nge PN, Jayson V, Pagaduan MY, Woolley AT. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling. J Chrom A. 2012;1261:129–35. doi:10.1016/j.chroma.2012.08.095.

    Article  CAS  Google Scholar 

  27. Kumar S, Sahore V, Rogers CI, Woolley AT. Development of an integrated microfluidic solid-phase extraction and electrophoresis device. Analyst. 2016;141:1660–8. doi:10.1039/C5AN02352A.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support and the DIM Analytics of France for the post-doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Thuy Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Szymon Dziomba and Monica Araya-Farias contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dziomba, S., Araya-Farias, M., Taverna, M. et al. Microscope-assisted UV-initiated preparation of well-defined porous polymer monolithic plugs in glass microchips for peptide preconcentration. Anal Bioanal Chem 409, 2155–2162 (2017). https://doi.org/10.1007/s00216-016-0161-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0161-1

Keywords

Navigation